首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring of sedimentation and erosion was conducted on an open coastal tidal flat on the southern flank of the Yangtze delta. Various elevation references were established in the intertidal zone and monitored intensively for 4 months in order to examine fortnightly and seasonal (calm weather and storm season) sedimentation and erosion. Longer term (100 years) sedimentation and preservation were investigated through examination of cores and trenches. Two different vertical grouping patterns of tidal bedding were distinguished with thinner and thicker sandy laminae. The number of sand-dominated layers and individual muddy and sandy lamina in the cores were compared with theoretically derived sedimentation rates in order to assess long-term preservation potential. Waves, especially high storm waves, have a significant influence on sedimentation and the preservation of intertidal deposits along the open-coast tidal flat. Monitoring during one season indicated that the sand-dominated layer was directly related to storm deposits, while the mud-dominated layer was deposited during calm weather conditions. The variation in sandy lamina thickness was not related to spring–neap tidal cycles during the monitoring period. The assumption of 100% preservation of sandy laminae deposited during every tidal cycle, which has been assumed in previous time-series analyses for the identification of palaeotidal periodicity, was found to be unrealistic along this open-coast tidal flat. Preservation potential decreases as temporal scale increases. During one neap–spring tidal cycle, the preservation potential of individual sandy and muddy laminae was of the order of 10%. Over a period of 100 years, the estimated preservation potential of individual laminae, including both calm weather and storm deposits, decreased to 0·2%. The 100-year preservation potential of storm-induced, sand-dominated layers was estimated to be of the order of 10%.  相似文献   

2.
Turnagain Arm is a macrotidal fjord‐style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio–estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap–spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well‐preserved apogean–perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well‐developed neap–spring cyclicity is possible because of the near‐complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick–thin spring cycles encoding the apogean and perigean tidal cycle. The apogean–perigean signal was not observed in subsequent years.  相似文献   

3.
通过近年来对江苏沿海有影响的台风暴潮作用前后的滩面高程观测,结合台风浪资料分析,探究了江苏中部沿海潮滩对风暴潮的响应过程。结果显示:潮滩剖面在风暴潮期间呈现"低滩侵蚀、沿岸输运、高滩稳定",明显区别于沙质海岸在台风浪作用下"高滩侵蚀、离岸输运、低滩淤积"的演变特征。应用Delft3D平面二维水沙动力数学模型,模拟了正常天气和台风浪情况下的滩面演变,从动力学角度解释了潮滩间不同区域演变特征差异的原因,论证了台风浪对地貌演变的短历时"插曲式"作用,阐明了涨潮优势流是风暴侵蚀后泥沙沿岸向输运的主控因子。  相似文献   

4.
In central Wisconsin, Cambrian strata of the Elk Mound Group record deposition on open‐coast, wave‐dominated tidal flats. Mature, medium‐grained quartz arenite is dominated by parallel‐bedding with upper‐flow regime parallel‐lamination, deposited during high‐energy storms that also produced three‐dimensional bedforms on the flats. Abundant wave ripples were produced as storms waned or during fair weather, in water depths ≤2 m. Indicators of variably shallow water (washout structures and stranded cnidarian medusae) and subaerial exposure (adhesion marks, rain‐drop impressions and desiccation cracks, including cracked medusae) are abundant. Parallel‐bedded facies preserve a Cruziana ichnofacies, similar to other Cambrian tidal‐flat deposits. Flats were dissected by small, mainly straight channels, the floors of which were grazed intensely by molluscs. Most channels were ephemeral but some developed low levées, point bars and cut‐banks, probably reflecting stabilization by abundant microbial mats and biofilms. Channels were filled with trough cross‐bedding that is interpreted to have been produced mainly during storm runoff. The strata resemble deposits of open‐coast, wave‐dominated tidal flats on the east coast of India and west coast of Korea. Ancient wave‐dominated and open‐coast tidal flats documented to date appear to have been limited to mud‐rich strata with ‘classic’ tidal indicators such as flaser bedding and tidal bundles. The Cambrian (Miaolingian to early Furongian) Elk Mound Group demonstrates that sandy, wave‐dominated tidal flats also can be recognized in the stratigraphic record.  相似文献   

5.
This study highlights lithofacies and biofacies characteristics of the open coast tidal flat near Daman on the eastern flank of Gulf of Khambhat. Sedimentological and biological observation record six facies within the tidal flat area including older beach, beach face, sand flat, mud flat/mixed flat, sand bar and beach rock. Distinct sedimentary structures, foraminiferal assemblage and bioturbation intensity characterize each facies. A wide variety of wave and current generated sedimentary features characterize the sand flat facies. Semiconsolidated sands of older beach running parallel the coastline at a level higher than the present beach face possibly records the latest sea level highstand. The beach rock reflects early cementation of sands in tropical environments. Foraminifera are widely distributed in sand flats, mixed flats and mud flats and grouped into two biofacies — Ammonia-Elphidium-Quinqueloculina biofacies (sand flat and mixed flat) and Trochammina-Miliammina biofacies (mud flats). The beach face and sand bar facies contain forminifera reworked from sand flat and mud/mixed flat. Seasonal variation in depositional style is marked by deposition of fresh mud deposited over large areas of the intertidal flat during monsoon time, most of which is washed away by waves and current actions well before the onset of the next monsoon.  相似文献   

6.
Open‐coast tidal flats are hybrid depositional systems resulting from the interaction of waves and tides. Modern examples have been recognized, but few cases have been described in ancient rock successions. An example of an ancient open‐coast tidal flat, the depositional architecture of the Lagarto and Palmares formations (Cambrian–Ordovician of the Sergipano Belt, north‐eastern Brazil) is presented here. Detailed field analyses of outcrops allowed the development of a conceptual architectural model for a coastal depositional environment that is substantially different from classical wave‐dominated or tide‐dominated coastal models. This architectural model is dominated by storm wave, low orbital velocity wave and tidal current beds, which vary in their characteristics and distribution. In a landward direction, the storm deposits decrease in abundance, dimension (thickness and spacing) and grain size, and vary from accretionary through scour and drape to anisotropic hummocky cross‐stratification beds. Low orbital wave deposits are more common in the medium and upper portion of the tidal flat. Tidal deposits, which are characterized by mudstone interbedded with sandstone strata, are dominant in the landward portion of the tidal flat. Hummocky cross‐stratification beds in the rock record are believed, in general, to represent storm deposits in palaeoenvironments below the fair‐weather wave base. However, in this model of an open‐coast tidal flat, hummocky cross‐stratification beds were found in very shallow waters above the fair‐weather wave base. Indeed, this depositional environment was characterized by: (i) fair‐weather waves and tides that lacked sufficient energy to rework the storm deposits; (ii) an absence of biological communities that could disrupt the storm deposits; and (iii) high aggradation rates linked to an active foreland basin, which contributed definitively to the rapid burial and preservation of these hummocky cross‐stratification deposits.  相似文献   

7.
浙江桐庐晚奥陶世晚期沉积层序和沉积环境分析   总被引:3,自引:0,他引:3  
文昌组上段顶部是一套潮汐层理非常发育的泥质砂岩或砂质泥岩,存在双向交错层理,层面有雨痕,应为潮坪沉积。潮坪沉积由小型层序构成,小型层序又是由砂、泥质单层组成。砂质单层底部通常为岩性突变面或侵蚀面,砂质纹层较厚,其中可见对称波痕或泥砾;向上砂质纹层变薄,过渡到泥质单层。砂质单层形成于暴风浪时期,泥质单层是风浪衰减后恢复正常的潮汐沉积。因此,小型层序从成因上说是一风暴层序。碎屑成份、砾石成份分析表明沉积物均来自华夏古陆的沉积岩和变质岩基底。物源一致,岩层产状变化不大,反映文昌组沉积环境稳定。岩性、粒度分析表明文昌组是一向上变细、由浅海高能环境向近岸低能环境过渡的沉积层序。文昌组下段为浅海砂岩沉积,上段顶部为潮坪沉积。二者之间是一套夹砾岩透镜体的泥质粉细砂岩,其沉积环境应介于浅海和滨岸之间,为水下岸坡沉积。砾岩层只是大的沉积旋回中出现的事件性水下冲积物。  相似文献   

8.
Microbial deposits at Shark Bay constitute a diverse living microbial carbonate system, developed in a semi‐arid, highly evaporative marine setting. Three tidal flats located in different embayments within the World Heritage area were investigated in order to compare microbial deposits and their Holocene evolution. The stressing conditions in the intertidal–subtidal environment have produced a microbial ecosystem that is trapping, binding and biologically inducing CaCO3 precipitation, producing laminated stromatolites (tufted, smooth and colloform), non‐laminated thrombolitic forms (pustular) and cryptomicrobial non‐laminated forms (microbial pavement). A general shallowing‐upwards sedimentary cycle was recognized and correlated with Holocene sea‐level variations, where microbial deposits constitute the younger (2360 years bp ) and shallower sedimentary veneer. In addition, sediments have been documented with evidence of exposure during the Holocene, from 1040 to 940 14C years bp , when sea‐level was apparently lower than present. Filamentous bacteria constitute the dominant group in the blister, tufted and smooth mat types, and coccus bacteria dominate the pustular, colloform and microbial pavement deposit types. In the subtidal environment within colloform and pavement structures, microbial communities coexist with organisms such as bivalves, serpulids, diatoms, green algae (Acetabularia), crustaceans, foraminifera and micro‐gastropods, which are responsible for exoskeleton supply and extensive bioturbation. The internal fabric of the microbial deposits is laminated, sub‐laminar, scalloped, irregular or clotted, depending on the amount of fine‐grained carbonate and the natural ability of microbial communities to trap and bind particles or induce carbonate precipitation. Nilemah tidal flat contains the thickest (1·3 m) and best‐developed microbial sedimentary system; its deposition pre‐dated the Rocky Point and Garden Point tidal flats, with the most positive isotope values for δ13C and δ18O, reflecting strong microbial activity in a highly evaporative environment. There is an evolutionary series preserved within the tidal flats reflecting relative ages and degree of salinity elevation.  相似文献   

9.
为了揭示滩涂对近岸水温影响,开展潮间带滩涂沉积物与海水之间热量交换研究。以韩国西南海岸的滩涂为例,建立滩涂沉积物温度模型,模拟不同潮汐状态下沉积物垂向剖面温度以及沉积物与水体间的热通量,并分析了季节、滩涂位置、潮位-太阳辐射相位对热通量的影响。研究表明:模拟出的沉积物温度与实测值吻合较好。沉积物与水体存在大量热量交换,且集中在淹没后的前3 h,最大热通量可达398.7 W/m2。冬季月份海水向滩涂净传热。夏季月份滩涂向水体净传热,且当滩涂淹没时刻发生在当地正午或正午过后3 h内,滩涂传递给水体的热量相对较大,达2.0 MJ/(m2·d);累积热通量随滩涂干滩率的减小而减小。研究成果为进一步深入研究滩涂影响下近岸水温变化提供了技术支撑。  相似文献   

10.
The stratigraphic record of many cratonic carbonate sequences includes thick successions of stacked peritidal deposits. Representing accumulation at or near sea‐level, these deposits have provided insights into past palaeoenvironments, sea‐level and climate change. To expand understanding of carbonate peritidal systems, this study describes the geomorphology, sedimentology and stratigraphy of the tidal flats on the Crooked‐Acklins Platform, south‐east Bahamas. The Crooked Island tidal flats extend continuously for ca 18 km on the platformward flank of Crooked Island, reaching up to 2 km across. Tidal flats include four environmental zones with specific faunal and floral associations and depositional characteristics: (i) supratidal (continuous supratidal crust and pavement); (ii) upper intertidal, with the mangrove Avicennia germinans and the cyanobacteria Scytonema; (iii) lower intertidal (with the mangrove Rhizophora mangal) and (iv) non‐vegetated, heavily burrowed subtidal (submarine). These zones have gradational boundaries but follow shore‐parallel belts. Coring reveals that the thickness of this mud‐dominated sediment package generally is <2 m, with depth to Pleistocene bedrock gradually shallowing landward. The facies succession under much of the tidal flat includes a basal compacted, organic‐rich skeletal‐lithoclast lag above the bedrock contact (suggesting initial flooding). This unit grades upward into rhizoturbated skeletal sandy mud (subtidal) overlain by coarsening‐upward peloid‐foraminifera‐gastropod muddy sand (reflecting shallowing to intertidal elevations). Cores from landward positions include stacked thin indurated layers with autoclastic breccia, root tubules and fenestrae (interpreted as supratidal conditions). Collectively, the data reveal an offlapping pattern on this prograding low‐energy shoreline, and these Holocene tidal flats may represent an actualistic analogue for ancient humid progradational tidal flats. Nonetheless, their vertical facies succession is akin to that present beneath channelled belt examples, suggesting that facies successions alone may not provide unambiguous criteria for prediction of the palaeogeomorphology, lateral facies changes and heterogeneity in stratigraphic analogues.  相似文献   

11.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

12.
A unique radial tidal sand ridge system (RTSRS) has developed under a complex tidal current field on the eastern China coast between the Yangtze River delta to the south and the abandoned Yellow River (Huanghe) delta to the north. The present study examines the sedimentary evolution of a ridge-channel pair in the central RTSRS. Three cores, with two on the ridges and one in the channel, were drilled to reveal the late Pleistocene-Holocene deposits of the system. Five sedimentary facies were distinguished, i.e. ridgeshallow subtidal facies, ridge-deep subtidal facies, nearsurface channel bottom facies, middle tidal flat facies and low tidal flat facies. The ridge-shallow subtidal facies consists of sandy strata with ripple cross beddings, horizontal lamina, and massive beddings. Bioturbation seldom occurs. The ridge-deep subtidal facies is primarily characterized by sandy and muddy interlayers with common flaser and lenticular bedding structures. Bioturbation appears abundantly. Massive and graded sediment sequences of storm origin are present as characterized by rich shell fragments. The nearsurface channel bottom facies consists of loose, soft, clayey silt deposits with deformed sedimentary layers. This facies occurs in the deeper part of the active channels. The middle tidal flat and lower tidal flat facies composed of silt-clay couplets prevailed primarily in the tidal flats. Incomplete sedimentary successions show that coastal plain deposits dominate in the study area during 12–13 ka B.P. The sandy ridge and channel facies became dominant during 4–6 ka B.P. when the sea level receded temporarily. Tidal ridge and channel in the study area became active during the last four decades. Sediment reworking due to typhoon and sandy ridge migration plays a key role in shaping the present radial ridge system.  相似文献   

13.
Analysis of 75 vibracores from the backbarrier region of Kiawah Island, South Carolina reveals a complex association of three distinct stratigraphic sequences. Beach ridge progradation and orientation-controlled backbarrier development during the evolution of Kiawah Island, and resulted in deposition of: (1) a mud-rich central backbarrier sequence consisting of low marsh overlying fine-grained, tidal flat/lagoonal mud; (2) a sandy beach-ridge swale sequence consisting of high and low marsh overlying tidal creek channel and point bar sand, and foreshore/shoreface; and (3) a regressive sequence of sandy, mixed, and muddy tidal flats capped by salt marsh that occurs on the updrift end of the island. Central backbarrier deposits formed as a result of the development of the initial beach ridge on Kiawah Island. Formation of this beach ridge created a backbarrier lagoon in which fine-grained estuarine and tidal flat mud accumulated. Washovers, oyster mounds, and tidal creek deposits form isolated sand and/or shell-rich lenses in the lagoon. Spartina alterniflora low marsh prograded into the lagoon as the tidal flats aggraded. Barrier progradation and sediment bar-bypassing at Stono Inlet created digitate beach ridges on the northeast end of Kiawah Island. Within the beach-ridge swales, tidal flats were disconformably deposited on shoreface and foreshore sand of the older beach ridges. Tidal creek drainage systems evolved to drain the swales. These rapidly migrating creeks reworked the tidal flat, foreshore, and shoreface sediments while redepositing a fining-upward sequence of channel lag and point bar deposits, which served as a substrate for salt marsh colonization. This resultant regressive sedimentary package marks the culmination of barrier island development and estuary infilling. Given enough time and sedimentation, the backbarrier sequence will ultimately prograde over the barrier island, reworking dune, beach, and foreshore sediments to form the upper sand-rich bounding surface of the barrier lithosome. Preservation of the regressive sequence is dependent upon sediment supply and the relative rate of sea-level rise, but the reworking of barrier islands by tidal inlets and migrating tidal creeks greatly alter and complicate the stratigraphic sequence.  相似文献   

14.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

15.
随着海平面上升和人类活动加剧,潮滩正面临着严重威胁,掌握其形态变化规律是研究潮滩系统对外在条件响应的直接手段。以江苏斗龙港潮滩为研究对象,利用无人机倾斜摄影测量技术,结合运动恢复结构(Structure from Motion,SfM)算法,重建潮滩三维点云,生成数字高程模型和正射影像,分析潮滩滩面及潮沟系统年内变化规律。研究结果表明:潮滩高程测量精度优于9 cm,水平精度优于2 cm;高程年内变化较大,变幅高达±0.5 m;潮沟短历时变化剧烈,无明显季节性变化特征;潮沟发育过程中,宽深比范围为10~25。无人机技术不仅可以监测粉砂淤泥质潮滩滩面变化趋势,还可以观测到卫星难以捕获的中小型潮沟短历时发育过程,可为监测河口海岸短周期动力地貌过程提供有力的技术支持。  相似文献   

16.
Tidal flats play a tremendous role for solving the problem of land use because of the crisis of population increments. Many coastal countries have carried out reclamation projects near seas in various degrees for a long time. China currently has about 2.13?million?hm2 of tidal flats that are mainly scattered in the delta plains and coastal regions near medium- to large-sized rivers. The tidal flats in China are reserves featuring dynamic growth and a capacity for continuous expansion; the tidal flat area undergoes an annual increase of over 20,000?hm2. In recent years, countries around the world have paid much attention to the marine ecological environment and have taken measures to restrict the scale and range of sea reclamation. Although widespread reclamation of tidal flats in China has taken place, such activities have also brought some negative effect: (1) water overdraft, seawater intrusion, (2) tidal gates and channel silting, (3) environment pollution, unbalanced ecosystem, and (4) loss of wetlands and threats to the survival of species. This paper examines the mechanisms associated with tidal flat dynamic growth, and points out that artificial siltation can greatly increase the growth speed of tidal flats, and the actual measured annual siltation thickness may reach 0.5?C2.7?m. At present, this paper proposes a theory relating to the ecological exploitation of this ecosystem as follows: (1) the principle of adjustment to local conditions; (2) the principle of three-dimensional distribution; (3) the principle of ecological balance; (4) the principle of green and environmental protection. In practical terms, this dynamic growth may play a significant role in mitigating conflicts relating to land use demands in coastal areas.  相似文献   

17.
中国的潮滩   总被引:31,自引:1,他引:31  
王颖  朱大奎 《第四纪研究》1990,10(4):291-300
本文将中国潮滩分为平原型和港湾型二类。以渤海湾和江苏海岸为例,讨论了平原潮滩的环境条件、沉积动力过程及沉积相,就浙江、福建具代表性的三个港湾,叙述了港湾潮滩的特征,还讨论了沉积物供应量及潮汐作用对潮滩发育的影响。  相似文献   

18.
A hierarchical series of tidal periodicities are preserved within laminated tidal flat deposits at the barrier/back-barrier interface of Romney Marsh and the Dungeness Foreland in southeast England. The sedimentary record of the tidal signature, extracted from variations in sand layer thickness, was found to be severely truncated with neap-spring periods typically represented by five or less sand layers and possibly only alternate neap-spring periods present. Despite the low number of sand layers deposited in these higher frequency tidal cycles, semi-annual periods are clearly preserved but tend to contain less than the expected 6 months of sedimentation. Annual accumulation rates of around 0.2–0.3 m/year are indicated. Local emplacement of storm beaches is considered to have created the protected conditions suitable for tidal rhythmite preservation. Ongoing foreland progradation and infilling eventually restricted tidal inundation to the point where distinct sand laminae were no longer deposited. Here, in contrast with other systems, accommodation space was not limiting and tidal flat elevation is reflected as a more subtle control on spatial changes in the resolution of the tidal signal.  相似文献   

19.
Coastal barriers provide sheltered, low-energy settings for fine-grained sediment deposition and retention, although the process of back-barrier infilling and how tidal-channel connectivity impacts this process is not well-understood. Understanding how back-barrier environments infill and evolve is necessary to predict how they will respond to future changes in sea-level and sediment supply. With this motivation, in situ observations and sedimentary signatures from an Amazonian tidal-channel system are interpreted to create a conceptual model of morphological evolution in a macrotidal back-barrier environment that is rich in fine-grained sediment, vegetated by mangroves and incised by tidal channels with multiple outlets. Results indicate that within a high-connectivity back-barrier channel, tidal processes dominate sedimentation and morphological development. Sediment cores (<60 cm) exhibited millimetre-scale tidalites composed of sand and mud. High-connectivity channels allow tidal propagation from multiple inlets, and in this case, the converging flood waves promote delivery of sediment fluxing through the system to the mangrove flats in the convergence zone. Sediment preferentially deposits in regions with adequate accommodation space and dense vegetation, and in these zones, sediment grain size is slightly finer than that transiting through the system. The greatest sediment-accumulation rates (3 to 4 cm yr−1), calculated from steady-state 210Pb profiles, were found in the convergence zone near the mangrove-channel edge. As tidal flats aggrade vertically and prograde into the channels, accommodation space diminishes. In effect, the channel’s narrowest stretch is expected to migrate along the path of net-sediment flux towards regions with more accommodation space until it reaches the tidal-convergence zone. The location of recent preferential infilling is evidenced by relatively rapid sediment-accumulation rates, finer sediment and significant clustering of small secondary tidal channels. These findings shed light on how sediment transported through vegetated back-barrier environments is ultimately preserved and how evidence preserved in surface morphology and the geological record can be interpreted.  相似文献   

20.
Invertebrate burrow distributions (neoichnology) across a modern tidal flat are presented as an analogue for interpreting the ichnology of palaeo‐tidal‐flat successions. Burrow distributions are linked to physical and chemical (physicochemical) stresses to establish the main controls on the distribution of biosedimentary structures. Across the tidal flat, there is clear heterogeneity in both the diversity of traces and the intensity of burrowing. This heterogeneity reflects a myriad of physicochemical stresses, with the sedimentation rate dominating burrow distributions. Across all substrates, the total area occupied by organisms rarely exceeds 3% of the tidal‐flat surface, and is commonly <1%; this equates to a bioturbation index value of one. To reach bioturbation index values of two to six, sediments must be available to biogenic reworking and/or recolonization. With an increasing sedimentation rate, substrates are rapidly buried and re‐exposed, which limits the time when a substrate is available to colonization. For palaeo‐ichnological studies, this research presents several key results. (i) Burrow cross‐cutting relationships in tidal‐flat successions commonly reflect natural heterogeneities in the areal distribution of infaunal communities, rather than infaunal tiering. (ii) Ichnofabric analysis of palaeo‐tidal flats with a high sedimentation rate would yield fabrics that reflect heterogeneities in the areal distribution of infaunal communities rather than variability in the physicochemical stresses of the environment. (iii) The composite trace‐fossil assemblage of tidal flats cannot be attributed to a single ichnofacies, but instead comprises elements typical of multiple ichnofacies. (iv) The main controls on trace assemblages across tidal flats in fully marine settings are sedimentological and include the sedimentation rate and, to a lesser extent, grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号