首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fourteen ferromanganese nodule–sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule–sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo – (307, 273), Ni – (71, 125), Mn – (64, 87), Cu – (43, 80), Co – (23, 75), Pb – (15, 24), Zn – (9, 11) and V – (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation (r ? 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.  相似文献   

2.
A 2m-long sediment core from the siliceous ooze domain in the Central Indian Ocean Basin (CIOB; 13‡03′S: 74‡44′E; water depth 5099m) is studied for calcium carbonate, total organic carbon, total nitrogen, biogenic opal, major and few trace elements (Al, Ti, Fe, K, Mg, Zr, Sc,V, Mn, Cu, Ni, Zn, Co, and Ba) to understand the productivity and intensity of terrigenous supply. The age model of the sediment core is based on U-Th dating, occurrence of Youngest Toba Tuff of ∼ 74 ka and Australasian microtektites of ∼ 770 ka. Low carbonate content (< 1%) of sediment core indicates deposition below the carbonate compensation depth. Organic carbon content is also very low, almost uniform (mean 0.2 wt%) and is of marine origin. This suggests a well-oxygenated bottom water environment during the past ∼ 1100ka. Our data suggest that during ∼ 1100 ka and ∼ 400 ka siliceous productivity was lower, complimented by higher supply of terrigenous material mostly derived from the metasedimentary rocks of High Himalayan crystalline. However, during the last ∼ 400 ka, siliceous productivity increased with substantial reduction in the terrigenous sediment supply. The results suggest that intensity of Himalayan weathering, erosion associated with monsoons was comparatively higher prior to 400 ka. Manganese, Ba, Cu, Ni, Zn, and Co have around 90% of their supply from noncrustal (excess) source and their burial to seafloor remained unaffected throughout the past ∼ 1100 ka.  相似文献   

3.
沈华悌 《沉积学报》1989,7(3):129-136
通过对中太平洋海盆表层沉积物与相伴生的锰结核的研究表面,丰度、品位等有明显的差异,在深海粘土中锰结核干度最度,钙质软泥多,锰结核的发现聚集与沉积物类型,沉积速率、孔隙度、金属含量及形成时的氧化还原条件,水深、底层流等的影响.锰结核的形成,发育与富集是受多种因素所控制,是一个模式内的约制。  相似文献   

4.
Deep-sea sediment cores, one from the Caribbean (calcareous ooze) and three from the Pacific-Antarctic basin (Globigerina ooze, siliceous ooze and pelagic clay) were analysed for Au, Pd, Ir and Mn by neutron activation. The average noble metal contents for 37 samples are: Au (ppb) Pd (ppb) Ir (ppb) 1.05 ± 0.9 3.5 ± 2.8 0.31 ± 0.14 Biogenic and lithogenic (terrigenous) constituents account for much of the noble metal in these sediments. The average noble metal content, particularly that of Au and Ir, shows little variation over the entire suite of four cores despite large differences in the proportions of biogenic and lithogenic fractions. In general neither component is a markedly more significant noble metal sink than the other. However, a strong correlation between Au and CaCO3 in the Caribbean calcareous ooze suggests that the biogenic fraction is a significant concentrator in this core.Palladium content is more variable than that of Au or Ir and in two of the Antarctic cores some Pd, probably of hydrogenous origin, is present.The Ir content of all cores is higher than that expected of purely terrigenous sources and there is little suggestion of biogenic concentration of the metal. AuIr ratios differ greatly from average continental crust but are similar to oceanic crust. In one of the Antarctic cores some Ir of hydrogenous and of extraterrestrial origin may be present.  相似文献   

5.
Core MD02-2508 retrieved from the plateau of the continental slope off Baja California recovered a 40-m-thick section of sapropel (up to 15% Corg), calcareous clay, and diatom ooze with the age of 120 ka at the core bottom. The section is subdivided into three units: Unit I (Holocene) consists of the laminated sapropel; Unit II comprising oxygen isotope stages (MIS) 2, 3, and 4 is represented by homogeneous calcareous clay with interbeds of slightly siliceous sapropelic mud; and Unit III (MIS-5) is composed of laminated sapropelic diatom ooze. Laminated intervals are characterized by the intercalation of two lamina types: (1) dark-colored organic-rich laminae containing multi-species “oceanic” diatom assemblages, as well as radiolarians, coccoliths, planktonic and benthic foraminifera; (2) lighter-colored laminae consisting of diatom ooze with the neritic colonial diatom assemblages commonly composed of one to three species of a single genera. The dark laminae are assumed to be generated within a high productivity zone over the slope, whereas light ones likely represent diatom mats produced by short-term boisterous phytoplankton blooms, possibly in the coastal upwelling.  相似文献   

6.
Fifty buried manganese nodules at different depth intervals were recovered in 12 sediment cores from the Central Indian Ocean Basin (CIOB). A maximum of 15 buried nodules were encountered in one sediment core (AAS-22/GC-07) and the deepest nodule was recovered at 5.50 m below seafloor in core AAS-04/GC-5A. Approximately 80% of the buried nodules are small in size (2 cm diameter) in contrast to the Atlantic Ocean and Peru Basin (Pacific Ocean) where the majority of the buried nodules are large, 8 cm and >6 cm, respectively. Buried nodule size decreases with core depth and this distribution appears to be similar to the phenomenon of “Brazil Nut Effect”. Buried nodules exhibit both smooth and rough surface textures and are ellipsoidal, elongated, rounded, sub rounded, irregular and polynucleated. Buried nodules from siliceous ooze are enriched in Mn, Cu, Ni, Zn, Mo, Ga, V and Rb whereas those from red clay are enriched in Fe, Co, Ti, U, Th, Y, Cr, Nb and Rare Earth Elements (REE). Buried nodules from siliceous ooze suggest their formation under hydrogenetic, early digenetic and diagenetic processes whereas those from red clay are of hydrogenetic origin.REE are enriched more than 1.5 times in buried nodules from red clay compared to siliceous ooze. However, the mode of incorporation of REE into buried nodules from both sedimentary environments is by a single authigenic phase consisting of Fe–Ti–P. Shale-normalized REE patterns and Ce anomalies suggest that nodules from siliceous ooze formed under more oxidizing conditions than those from red clay. Nodules buried at depths between 1.5 and 2.5 m are diagenetic (Mn/Fe ratio 10–15), formed in highly oxic environments (large positive Ce anomalies) and record aeolian dust (high Eu anomalies). Chemical composition, surface texture and morphology of buried nodules are similar to those of surface nodules from the same basin. Furthermore, buried nodule compositions do not exhibit any distinct patterns within the core depth, suggesting that buried nodules neither grow nor dissolve after their burial in the sediment column.  相似文献   

7.
A black shale sample collected from the Chimiari site(Tarbela) was analyzed for elemental contents.Inductively coupled plasma-optical emission spectrometry(ICP-OES) was employed to determine major and trace elements in the digests.Precise analysis was accomplished for the black shales,which was better than 2.0%.Result shows that the shales are very rich in Ca(25439 μg·g-1),Fe(13933 μg·g-1),Ti(6932 μg·g-1),Al(5993 μg·g-1) and K(2730 μg·g-1).  相似文献   

8.
The behavior of rare earth elements (REE) and Th is studied along the west–east transect at 22°N across the Atlantic Ocean. It is shown that both REE and Th contents, relative to Al (the most lithogenic element), increase toward the pelagic region. The increasing trend becomes more complicated due to variations in the content of biogenic carbonate that serves as a diluting component in sediments. The REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing a weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al + Mn + Fe) and (Fe + Mn)/Ti, do not reach critical values. Variations in the REE content and composition allowed us to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenetic type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th concentrations depend on Fe content in Atlantic sediments. Therefore, one can suggest that only a minor amount of phosphorus is bound in bone debris. The low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic, as compared with those in pelagic regions of the Pacific.  相似文献   

9.
太平洋北部铁锰结核富集区沉积物的元素地球化学特征   总被引:2,自引:1,他引:2  
鲍根德 《沉积学报》1990,8(1):44-56
本文对太平洋北部铁锰结核富集区沉积物的元素地球化学作了较为详细的研究。因子分析提供的信息表明,元素的分布主要受三个因子控制:(1)粘土及Fe、Mn氧化物水化物胶体的吸附作用;(2)生物化学作用过程有关的自生沉积作用;(3)海底页岩风化及附近海区的火山喷发作用。元素的来源:(1)Fe、Mn、Cu、Co、Ni、Zn、Cr、Cr、Mg、Al、Ti、K共生,主要来自粘土吸附;(2)C有机、N、Sr、Na及Si、Ca、Sr主要来自生物化学过程沉积;(3)Pb主要来源于岩石碎屑(火山喷发碎屑)。  相似文献   

10.
A 4.1 m long sediment core from the Eastern Arabian Sea (EAS) is studied using multiple geochemical proxies to understand the variation of productivity and terrigenous matter supply during the past 100 ka. The temporal variation in element concentration and fluxes of CaCO3, organic carbon (Corg) and Barium excess (Baexc), together, in general indicate a higher productivity during the cold climate and highest during the Last Glacial Maximum (LGM) in particular. This cold climate-increased productivity coupling may be attributed to the shoaling of nutricline due to enhanced convective mixing resulting from the intensified winter monsoon. Increased linear sedimentation rates and fluxes of Al, Fe, Mg, Ti, Cr, Cu, Zn, and V during the cold period also suggest increased input of terrigenous matter supporting intensified winter winds. However, the presence of large abundance of structurally unsupported elemental content (e.g.: Mg-86%, Fe-82% and Al-53%) indicate increased input of terrigenous material which was probably enhanced due to intense winter monsoon.  相似文献   

11.
We studied the mobility of silver, heavy metals and europium in waste from the Las Herrerías mine in Almería (SE Spain). The most abundant primary mineral phases in the mine wastes are hematite, hydrohematite, barite, quartz, muscovite, anorthite, calcite and phillipsite. The minor phase consisted of primary minerals including ankerite, cinnabar, digenite, magnesite, stannite, siderite and jamesonite, and secondary minerals such as glauberite, szomolnokite, thenardite and uklonscovite. The soils show high concentrations of Ag (mean 21.6 mg kg–1), Ba (mean 2.5%), Fe (mean 114,000 mg kg–1), Sb (mean 342.5 mg kg–1), Pb (mean 1,229.8 mg kg–1), Zn (mean 493 mg kg–1), Mn (mean 4,321.1 mg kg–1), Cd (mean 1.2 mg kg–1) and Eu (mean 4.0 mg kg–1). The column experiments showed mobilization of Ag, Al, Ba, Cu, Cd, Eu, Fe, Mn, Ni, Sb, Pb and Zn, and the inverse modelling showed that the dissolution of hematite, hausmannite, pyrolusite and anglesite can largely account for the mobilization of Fe, Mn and Pb in the leaching experiment. The mobility of silver may be caused by the presence of kongsbergite and chlorargyrite in the waste, while the mobility of Eu seems to be determined by Eu(OH)3, which controls the solubility of Eu in the pH–Eh conditions of the experiments. The mineralogy, pH, Eh and geochemical composition of the mine wastes may explain the possible mobilization of heavy metals and metalloids. However, the absence of contaminants in the groundwater may be caused by the carbonate-rich environment of “host-rocks” that limits their mobility.  相似文献   

12.
Phosphorus (P) application in excess of plant requirement may result in contamination of drinking water and eutrophication of surface water bodies. The phosphorous buffer capacity (PBC) of soil is important in plant nutrition and is an important soil property in the determination of the P release potential of soils. Phosphorus sorption greatly affects both plant nutrition and environmental pollution. For better and accurate P fertilizer recommendations, it is necessary to quantify P sorption. This study was conducted to investigate available P and P sorption by calcareous soils in a semi-arid region of Hamadan, western Iran. The soil samples were mainly from cultivated land. Olsen’s biocarbonate extractable P (Olsen P) varied among soils and ranged from 10 to 80 mg kg−1 with a mean of 36 mg kg−1. Half of the soils had an Olsen P > 40 mg kg−1 and >70% of them had a concentration >20 mg kg−1, whereas the critical concentration for most crops is <15 mg P kg−1. Greater average Olsen P in soils occurred under garlic (56 mg kg−1) and potato (44 kg kg−1) fields than in dry-land wheat farming (24 mg kg−1), pasture (30 mg kg−1), and wheat (24 mg P kg−1) fields. A marked increase in fertilizer P rates applied to agricultural soils has caused P to be accumulated in the surface soil. Phosphate sorption curves were well fitted to the Freundlich equation. The standard P requirement (SPR) of soils, defined as the amount of P sorbed at an equilibrium concentration of 0.2 mg l−1 ranged from 4 to 102 mg kg−1. Phosphorus buffer capacity was relatively high and varied from 16 to 123 l kg−1 with an average of 58 l kg−1. In areas of intensive crop production, continual P applications as P fertilizer and farmyard manure have been used at levels exceeding crop requirements. Surface soil accumulations of P are high enough that loss of P in surface runoff and a high risk for P transfer into groundwater have become priority management concerns.  相似文献   

13.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

14.
In the Hunan-Guizhou-Guangxi area there have developed very thick bedded siliceous rocks of the late Sinian. The rocks have a fairly pure composition, with an average content of siliceous minerals exceeding 95%. They are relatively rich in Fe and Mn, and poor in Al, Ti and Mg. The Fe/Ti, (Fe+Mn)/Ti, Al/(Al+Fe+Mn) and U/Th ratios and the Al-Fe-Mn and Fe-Mn-(Ni+Co+Cu)×10 triangle diagrams all show that they are hydrothermal sedimentary siliceous rocks. In the rocks the total amount of REEs is low, the δCe shows an obvious negative anomaly and the 8Eu a weak anomaly, and LREE>HREE, all indicating that they are products of hydrothermal processes. The δ30Si and δ18O values, as well as the formation temperature of the rocks all clearly show that the silica forming the rocks comes from hot water. Besides, analyses of the depositional environment of the rocks using the MnO/TiO2 ratio and the δCe and δ30Si values yield the same conclusion that they are formed in environments from continental marginal slope  相似文献   

15.
We investigated the effects on phosphorus (P) release of the addition of potato, wheat, and sunflower residues and fruit compost to five calcareous soils. Residue was added at the rate of 20 g kg−1. After 2 months of incubation, P values in control and amended soils were used for kinetic studies and fractionated by a sequential extraction procedure. The relative contribution of available P fraction (KCl-P) increased from 1.4% in control soils to 1.8%, 1.9%, 2.2%, and 2.3% in soils amended by fruit, wheat, potato, and sunflower residue addition, respectively, indicating that organic residues increased P in this fraction. In soils amended with different residues, the percentage of Olsen-P released over 86-h successive extractions with 0.01 M CaCl2 ranged from 57.6% for fruit residue addition (average of five soils) to 60.5% for potato residue addition. The ability of residues to release P depended on the soil properties, with 21.9 mg kg−1 (average of all residues) released to soil 2 and 77.4 mg kg−1 released to soil 4. Also residues behaved differently, with 31.5 mg kg−1 (average of five soils) released by fruit residues and 40.0 mg kg−1 released by sunflower residues. Release of P was best described by a parabolic diffusion model. The corresponding rate constant (mg kg−1 h−1/2) for P release for amended soils, defined as the release rate averaged for five soils, was found to decrease in the order: potato (2.73) > sunflower (2.61) > wheat (2.56) > fruit (2.50). The present study demonstrates that addition of residues improves P availability of these calcareous soils by increasing extractable P and the release rate and could be an alternative, indigenous source of P. However, the increase in P availability and the release rate following organic residue application suggests high potential mobility to water sources.  相似文献   

16.
Chemical methods are generally chosen to monitor soil pollution but magnetic measurements proved to yield additional information at low cost and less time consumption. In this investigation, the novel use of rapid and non-destructive magnetic measurements to characterize Br levels in Xuzhou (China) urban roadside soils was reported. X-ray fluorescence spectrometry (XRF) was used to quantify Br in the soil samples. Data from 21 roadside soil samples confirm Br contamination, with a mean level of 4.36 mg kg−1 and a range of 2.4–8.7 mg kg−1. These values are higher than that of unpolluted soils in Xuzhou that averages 1.1 mg kg−1. Hierarchical clustering analysis shows Br in Xuzhou roadside soils is mainly from road traffic. Clear correlations between Br levels and simple magnetic parameters [mass specific susceptibility (χ LF), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanence (SIRM)] are observed. The present study shows that these three magnetic parameters can be used as a proxy for Br levels in Xuzhou urban roadside soils.  相似文献   

17.
Detailed magnetic and geochemical measurements were performed on urban roadside soils collected from Lishui city, China, to establish a possible link between the enhanced concentration of traffic-related magnetic particles and heavy metals. Relatively higher magnetic susceptibility (mean: 124.1 × 10−8 m3 kg−1) and concentrations of metals (Cd, Cu, Pb and Zn) were observed for roadside soils. Concentration-dependent magnetic parameters (χ and SIRM) are highly significantly positively correlated to the concentration of metals (Ca, Cr, Ni, Cu, Zn, Cd, Pb, Fe, and V), but not significantly correlated with As, Mn, Co, Mg, and K. The principal component analysis showed that χ and SIRM significantly correspond to elements Ca, Cd, Cu, Pb, and Zn. The χ and SIRM also have significant linear correlation with integrated pollution index, indicating that χ and SIRM can be used as effective proxy indicators for the pollution of heavy metals. Magnetite in the pseudo-single-domain/multidomain (PSD/MD) grain size was identified as the dominant magnetic carrier by temperature-dependent measurements of saturation magnetization (Ms–T curve), XRD and hysteresis loops. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) analysis of the magnetic particles revealed the presence of large traffic-related angular-subangular, blocky, and spherical iron oxide particles. These iron oxide particles are typical for particles produced by traffic-related anthropogenic activities. It is concluded that vehicle emissions may be the major source of elevated heavy metals and magnetic particles in roadside soils. The results proved the applicability of magnetic method in detecting roadside pollution derived from vehicle emissions.  相似文献   

18.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

19.
Simulated acidic precipitation (1:1 equivalent basis H2SO4:HNO3) at pH values of 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 7.0 were conducted using column leaching to determine impacts of simulated acid rain on phosphorus (P) leaching from a calcareous sandy loam soil over a 40-day period. Soil columns were irrigated every day to make a total of 1,061 mm, equivalent to 3.5 years of rainfall (based on average annual rainfall). Leachates were collected and analyzed for anions and cations. There was significant nonlinear correlation between the amount of P leached and the simulated acid rain (R 2 = 0.61). Losses of P from the pH 2.5 and 7.0 treatments were 1.23, and 1.32 mg kg−1, respectively. The results showed that the amount of P leached from pH 4 (1.46 mg kg−1) and 5 treatments (1.52 mg−1 kg−1) were significantly larger than other treatments. Linear equation adequately described leaching of P in different treatments. The slope (mg kg−1 day−1) in the linear equation was defined as the leaching rate and for the pH 2.5 was 0.0354, and 0.0382 and 0.0406 for pH 4.5 and 7.0, respectively. The geochemical code Visual MINTEQ was used to calculate saturation indices. Leaching of P in different treatments was controlled by rate-limited dissolution of hydroxyapatite, β-tricalcium phosphate and to some extent octacalcium phosphate. The results indicate that acid rain in calcareous sandy loam soils may pose a risk in terms of groundwater contamination with P.  相似文献   

20.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号