首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

2.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

3.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

4.
Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated light attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and light attenuation in both winter and summer begining in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a majorSyringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward toward Big Pine Key, indicating changes in the bottom cover from before the die-off. The southern and eastern sections of the Bay have not shown significant changes in water clarity or bottom albedo throughout the entire time period.  相似文献   

5.
In coastal ecosystems with long flushing times (weeks to months) relative to phytoplankton growth rates (hours to days), chlorophyll a (chl-a) integrates nutrient loading, making it a pivotal indicator with broad implications for ecosystem function and water-quality management. However, numerical chl-a criteria that capture the linkage between chl-a and ecosystem impairments associated with eutrophication (e.g., hypoxia, water clarity and loss of submerged aquatic vegetation, toxic algal blooms) have seldom been developed despite the vulnerability of these ecosystems to anthropogenic nutrient loading. Increases in fertilizer use, animal wastes, and population growth in the Chesapeake Bay watershed since World War II have led to increases in nutrient loading and chl-a. We describe the development of numerical chl-a criteria based on long-term research and monitoring of the bay. Baseline chl-a concentrations were derived using statistical models for historical data from the 1960s and 1970s, including terms to account for the effects of climate variability. This approach produced numerical chl-a criteria presented as geometric means and 90th percentile thresholds to be used as goals and compliance limits, respectively. We present scientific bases for these criteria that consider specific ecosystem impairments linked to increased chl-a, including low dissolved oxygen (DO), reduced water clarity, and toxic algal blooms. These multiple lines of evidence support numerical chl-a criteria consisting of seasonal mean chl-a across salinity zones ranging from 1.4 to 15 mg m?3 as restoration goals and corresponding thresholds ranging from 4.3 to 45 mg m?3 as compliance limits. Attainment of these goals and limits for chl-a is a precondition for attaining desired levels of DO, water clarity, and toxic phytoplankton prior to rapid human expansion in the watershed and associated increases of nutrient loading.  相似文献   

6.
Data are presented on dissolved oxygen (DO) concentrations and their relationship to salinity, suspended particulate matter (SPM), concentrations, and the turbidity maximum in the Humber-Ouse Estuary, United Kingdom, during summer 1995. Measurements in the upper Humber during March 1995 showed DO in the range 82% to 87% of saturation. Suspended particulate matter concentrations were <5000 mg l?1 and salinity was in the range 0.5 to 12. In contrast, a pronounced DO sag occurred in the upper reaches of the Ouse during medium and spring tide, summer conditions. The DO minimum was essentially an anoxic level and was associated with the location of the turbidity maximum, at salinities between about 0.4 and 1.5. SPM concentrations at 1 m beneath the surface reached 25,000 mg l?1 in the turbidity maximum, between about 20 km and 40 km from the tidal limit. Suspended particulate matter concentrations were much lower at neap tides, although dense suspensions of SPM (>60,000 mg l?1) occurred within 1 m of the bed in the turbidity maximum region. A spring-neap record showed a dramatic and tidally controlled decrease in DO at very low salinities as the tides progressed from neaps to springs. An anchor station located down-channel of the turbidity maximum showed that about 95% of the variance in DO, which varied from 28% at low-water slack to 67% at high-water slack, could be explained in terms of salinity variation. At the up-channel margins of the turbidity maximum, DO increased from zero (anoxia) near high water to 60% near low water slack, in contrast to the behavior down-channel of the turbidity maximum. About 82% of the variance in DO could be explained in terms of salinity variations alone. Only 43% of the DO variance could be explained in terms of SPM alone. Up-channel of the turbidity maximum, SPM concentrations were relatively low (<3000 mg l?1) and DO levels varied from 48% of saturation near high water to 83% near low water slack. About 76% of the variance in DO could be explained in terms of salinity variations alone. Within the turbidity maximum region, DO varied from <2% saturation on the early flood and late ebb and maximized around 7% at high water slack. About 63% of the variance in DO could be explained in terms of salinity variation alone. This increased to 70% when suspended particulate matter was taken into account. Only 29% of the DO variance could be explained in terms of suspended particulate matter alone. Because bacteria were likely to have been the cause of the observed reduction in DO, the numbers of bacteria, both free-living and attached to particles, were measured in the turbidity maximum region. Numbers of free-living bacteria were low and most of the bacteria were attached to sediment particles. There was a linear correlation between total bacterial number and suspended particulate matter concentration, suggesting that the strong DO demand was exerted locally as a result of bacterial activity associated with increased suspended particulate matter concentrations. An order of magnitude analysis of DO consumption within the Ouse’s turbidity maximum, based on the premise that DO depletion was directly related to suspended particulate matter concentrations and that DO addition was due to reaeration, indicates that complete deoxygenation could have occurred with an oxygen depletion rate of ~0.01 mg DO h?1/g suspended particulate matter during the residence time of waters within the turbidity maximum (~7 d). This rate was sufficiently fast that anoxic to aerobic conditions were able to develop a spring-neap periodicity within the turbidity maximum, but too slow to generate substantial intratidal fluctuations in DO. This is in accordance with the observations, which show that relatively little of the intratidal variance in DO could be explained in terms of suspended particulate matter fluctuations, whereas most of the variance could be explained in terms of salinity, which behaved as a surrogate measure for the proximity of the turbidity maximum.  相似文献   

7.
Tidal fluctuation could modify the physicochemical parameters in coastal groundwater mixing zone (CGMZ) notably, which in turn largely impacts on the reactive transport, discharge, and cycling of carbon, nutrients, trace metals, and other dissolved constituents. In this study, to capture the dynamic of groundwater physicochemical parameters (e.g., salinity, dissolved oxygen, pH, temperature, and oxidation/reduction potential) under the effect of tidal fluctuation, in situ measurement of groundwater is conducted along a 2D transection at different tidal stages. The results demonstrate visible periodic variations of parameters like salinity, temperature, DO, and pH, while the groundwater pH oscillation displays a phase lag behind the tidal fluctuation. Furthermore, the salinity variation at the near-surface area is mainly controlled by the mixing process between the infiltrated seawater and groundwater. Barring the mixing process, the groundwater temperature at the near-surface area is also affected by day and night air temperature difference. Meanwhile, the depleting DO and declining pH indicate that the biodegradation via aerobic respiration is highly active in CGMZ and acts as one of the major impact factors for the DO dynamic. The sharp contrast between the high removal rate of DO (7.25 mmol m?3 day?1) and relatively low production rate of H+ (9.38 μmol m?3 day?1) demonstrates the existence of the processes consuming H+ and DO besides aerobic respiration such as dissolution of carbonates, and respiration of microorganism and mangrove roots. Moreover, owing to the mixing process, the salinity transition zone overlaps with the oxidization/reduction potential transition zone. The enrichment of Fe2+ and Mn2+ could well explain the highly reducing saline groundwater observed in this study. In a nutshell, all physicochemical parameters are sensitive to tidal fluctuation, which provides implication for further study on the variation of biogeochemical process in CGMZ.  相似文献   

8.
Seasonal hypoxia [dissolved oxygen (DO)?≤?2 mg?l?1] occurs over large regions of the northwestern Gulf of Mexico continental shelf during the summer months (June–August) as a result of nutrient enrichment from the Mississippi–Atchafalaya River system. We characterized the community structure of mobile fishes and invertebrates (i.e., nekton) in and around the hypoxic zone using 3 years of bottom trawl and hydrographic data. Species richness and total abundance were lowest in anoxic waters (DO?≤?1 mg?l?1) and increased at intermediate DO levels (2–4 mg?l?1). Species were primarily structured as a benthic assemblage dominated by Atlantic croaker (Micropogonias undulatus) and sand and silver seatrout (Cynoscion spp.), and a pelagic assemblage dominated by Atlantic bumper (Chloroscombrus chrysurus). Of the environmental variables examined, bottom DO and distance to the edge of the hypoxic zone were most strongly correlated with assemblage structure, while temperature and depth were important in some years. Hypoxia altered the spatial distribution of both assemblages, but these effects were more severe for the benthic assemblage than for the pelagic assemblage. Brown shrimp, the primary target of the commercial shrimp trawl fishery during the summer, occurred in both assemblages, but was more abundant within the benthic assemblage. Given the similarity of the demersal nekton community described here to that taken as bycatch in the shrimp fishery, our results suggest that hypoxia-induced changes in spatial dynamics have the potential to influence harvest and bycatch interactions in and around the Gulf hypoxic zone.  相似文献   

9.
Analysis of 6 yr of monthly water quality data was performed on three distinct zones of Florida Bay: the eastern bay, central bay, and western bay. Each zone was analyzed for trends at intra-annual (seasonal), interannual (oscillation), and long-term (monotonic) scales. the variables TON, TOC, temperature, and TN∶TP ratio had seasonal maxima in the summer rainy season; APA and Chla, indicators of the size and activity of the microplankton tended to have maxima in the fall. In contrast, NO3 , NO2 , NH4 +, turbidity, and DOsat, were highest in the winter dry season. There were large changes in some of the water quality variables of Florida Bay over the study period. Salinity and TP concentrations declined baywide while turbidity increased dramatically. Salinity declined in the eastern, central, and western Florida Bay by 13.6‰, 11.6‰, and 5.6‰, respectively. Some of the decrease in the eastern bay could be accounted for by increased freshwater flows from the Everglades. In contrast to most other estuarine systems, increased runoff may have been partially responsible for the decrease in TP concentrations as input concentrations were 0.3–0.5 μM. Turbidity in the eastern bay increased twofold from 1991 to 1996, while in the central and western bays it increased by factors of 20 and 4, respectively. Chla concentrations were particularly dynamic and spatially heterogeneous. In the eastern bay, which makes up roughly half of the surface area of Florida Bay, Chla declined by 0.9 μg l−1 (63%). The hydrographically isolated central bay zone underwent a fivefold increase in phytoplankton biomass from 1989 to 1994, then rapidly declined to previous levels by 1996. In western Florida Bay there was a significant increase in Chla, yet median concentrations of Chla in the water column remained modest (∼2 μg l−1) by most estuarine standards. Only in the central bay did the DIN pool increase substantially (threefold to sixfold). Notably, these changes in turbidity and phytoplankton biomass occurred after the poorly-understood seagrass die-off in 1987. It is likely the death and decomposition of large amounts of seagrass biomass can at least partially explain some of the changes in water quality of Florida Bay, but the connections are temporally disjoint and the process indirect and not well understood.  相似文献   

10.
The physicochemical qualities of a typical rural-based river were assessed over a 12-month period from August 2010 to July 2011 spanning the spring, summer, autumn and winter seasons. Water samples were collected from six sampling sites along Tyume River and analysed for total nitrogen, orthophosphate, biochemical oxygen demand (BOD), temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and turbidity. BOD regimes did not differ significantly between seasons and between sampling points and ranged from 0.78 to 2.76 mg/L across seasons and sampling points, while temperature ranged significantly (P < 0.05) between 6 and 28 °C. Turbidity varied significantly (P < 0.05) from 6 to 281 nephelometric turbidity units while TDS (range 24–209 ppm) and conductivity (range 47.6–408 mg/L) also varied significantly (P < 0.05) across sampling points with a remarkable similarity in their trends. Orthophosphate concentrations varied from 0.06 to 2.72 mg/L across seasons and sampling points. Negative correlations were noted between temperature and the nutrients, DO and temperature (r = ?0.56), and TDS and DO (r = ?0.33). Positive correlations were noted between TDS and temperature (r = 0.41), EC and temperature (r = 0.15), and DO and pH (r = 0.55). All nutrients were positively correlated to each other. Most measured parameters were within prescribed safety guidelines. However, the general trend was that water quality tended to deteriorate as the river flows through settlements, moreso in rainy seasons.  相似文献   

11.
Phytoplankton productivity and the factors that influence it were studied in the Logan River and southern Moreton Bay, a large embayment on the east coast of Australia. Phytoplankton productivity, dissolved and total nutrient concentrations, and turbidity were determined throughout high and low rainfall periods to characterize light and nutrient influences on productivity. Turbidity and nutrient concentrations were highest at upriver sites, but productivity was highest at the river mouth and within the river plume. Phytoplankton productivity peaked after rainfall events (>150 mg C m?3 h?1), commensurate with a decrease in dissolved nitrogen concentrations. Productivity responses to increased nutrient concentrations and light availability were determined in laboratory incubations. During summer, productivities at the bay sites were stimulated by nitrogen (N) enrichment, while productivities at upriver sites were stimulated by phosphorus (P) addition. Light stimulation of productivities was more pronounced at upriver sites than bay sites. The relative magnitude of nutrient and light stimulation of productivities indicate a predominance of light limitation upriver, significant N limitation within the Logan River plume, and little effect of light, N, or P at sites beyond the Logan River plume. Productivity decreased with seasonal decreases in temperature. Lower water temperatures in winter probably helped determine maximum rates of phytoplankton productivity. The combination of light and N limitation of productivity during summer, and temperature limitation during winter, account for low areal productivities (<0.6 g C m?2 d?1), compared with other rivers and estuaries worldwide.  相似文献   

12.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

13.
Activity ratios (AR) of radium isotopes have been used with success to constrain estimates of water ages and to approximate residence times in coastal waters. We compared two common radium sampling methods (grab sampling and stationary moorings) to estimate water ages and the residence time of St. Andrew Bay waters in northwest Florida, USA. Both sampling methods utilize manganese dioxide fibers (“Mn fibers”) to adsorb dissolved radium from the water column. Grab samples capture radium activities at a discrete time while moorings integrate radium activities over longer deployments. The two methods yielded similar results in this study and thus both approaches are useful for water age comparisons and residence time approximations. However, since radium often varies as a function of tidal stage, deploying moorings over a complete tidal cycle is the preferred approach. An estimated residence time for North Bay and West Bay of 8–11 days was approximated using ARs for both ex224Ra/223Ra and ex224Ra/228Ra. Some complications were introduced as St. Andrew Bay is a tidally dominated, rather than a river-dominated bay system where this method has previously been applied. The largest freshwater source to this bay system is from a man-made reservoir, with an average freshwater flow of only 20 m3 s?1. The activity concentrations and ARs measured by both sampling methods suggest that while the reservoir is the prominent radium source, it is not the only radium source. Nonetheless, a tidal mixing model applied to the western half of the system yielded an approximate flushing time of 10–12 days, similar to that derived from our radium-based water age approach.  相似文献   

14.
The diet and egg production rate ofAcartia tonsa were measured during the thermally stable period between June and October 1995 at four locations in inner and outer Florida Bay. We sought to characterize the role ofA. tonsa in the bay’s pelagic food web, which has been changing since 1987, when the dominant submerged vegetation began shifting from benthic seagrasses to planktonic algae. At Rankin Lake, a shallow basin on the north side of the inner bay, where extensive seagrass mortality and persistent cyanobacteria blooms have occurred, microplankton biomass was relatively high and dominated by heterotrophic protists and dinoflagellates. Nanoplankton at Rankin, Lake, while numerically abundant, usually contributed only a small portion of the biomass. The ingestion rate ofA. tonsa in Florida Bay varied independently of food concentration (i.e., total microplankton biomass), but rates were higher (mean±SD =3.88 ± 0.73 μg C copepod?1 d?1) on the north side of the bay than on the south side (0.78 ±0.11 μg C copepod?1 d?1). Microzooplankton and dinoflagellates were important dietary constituents, especially in the vicinity of Rankin Lake. Egg production in this region (mean ± SD = 14.2 ± 7.7 eggs female?1 d?1) was considerably high than the baywide mean (5.8±0.81 eggs female?1d?1), and principal components analysis revealed associations between egg production and both dietary microzooplankton and dinoflagellate biomass. However, although grazing rates were relatively high in the inner bay,A. tonsa removed only 1–6% of the primary production from the water column during the summer and its egg production rates were low relative to typical rates for the species.  相似文献   

15.
Kara-Bogaz-Gol Bay is a large (around 18,000 km2) and shallow (few meters deep) lagoon located east of the Caspian Sea. Its water surface was several meters to several dozens cm lower than in the Caspian Sea, so water flows from the Caspian Sea through a narrow strait into the bay, where it evaporates. Kara-Bogaz-Gol Bay is one of the saltiest bodies of water in the world; its water salinity amounts to 270–300 g/l. Different kinds of salts available in this natural evaporative basin has been used commercially since at least the 1920s. In March 1980, in order to decelerate a continuous fall of the Caspian Sea level, which in 1977 was the lowest over the last 400 years (?29 m), the Kara-Bogaz-Gol Strait was dammed. In response to this human intervention, the bay had already dried up completely by November 1983. In 1992, the dam was destroyed, and Kara-Bogaz-Gol Bay had been filling up with the Caspian Sea water at a rate of about 1.7 m/year up to 1996 as observed by the TOPEX/Poseidon satellite altimetry mission. Since then, Kara-Bogaz-Gol Bay level evolution with characteristic seasonal and interannual oscillations has been similar to that of the Caspian Sea. Physical and chemical evolution of the bay in the twentieth and twenty-first centuries is traced in detail in the paper.  相似文献   

16.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

17.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

18.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

19.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   

20.
We used growth rates of juvenile winter flounderPseudopleuronectes americanus to assess anthropogenic influence on habitat quality at three sites in Narragansett Bay, Rhode Island. The upper bay site, Gaspee Point, had the highest population density and concentration of total nitrogen; human inputs decreased down bay. Growth rates of individually marked fish were measured in three 15-d experiments from June 8 to July 6, 1998 in 1-m2 cages placed at upper, middle, and lower bay sites. Water temperature, salinity, dissolved oxygen (DO), and benthic food were also measured. Stable isotopes of nitrogen and carbon were measured in experimental fish as possible indicators of nutrient enrichment and to identify organic carbon sources. Growth rates were 0.22–0.60 mm d−1, with the highest average at the mid-bay site. Growth was initially fastest at Gaspee Point, but dropped off as DO concentrations fell. Step-wise multiple regression indicated that location (upper, middle, or lower bay) explained most of the variability in fish growth (40%). Coefficients of other significant variables indicated that fish grew faster at lower salinities, smaller sizes, and with decreased time that DO was below 2.3 mg l−1. Benthic prey varied among sites and there was significantly less food and fewer species at Gaspee Point.Polydora cornuta was a favored food at all sites and was found in over half the stomachs. Values of δ15N in fish and sediments did not reflect differences in total nitrogen concentrations recorded near the sites. We suggest that anthropogenic influences, such as nutrients and sewage, affected habitat quality by reducing DO, which lowered fish growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号