首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The sources and formation conditions of unconventional Zr–Nb–REE mineralisation (REE = rare earth elements) presently found in increasing number worldwide are still poorly constrained. One particular problem is the specific role of magmatic and hydrothermal processes active in various geological settings. Investigation of Zr–Nb–REE mineralisation at Khalzan Buregte and Tsakhir, Western Mongolia, enables to evaluate magmatic processes preceding economic mineralisation and, in a second step, to compare similar ore-forming processes developing in host rocks of contrasting rock composition (low- vs. high-silica rocks). The genesis of the Zr–Nb–REE mineralisation is re-assessed using field observations, whole rock analysis (chemical composition, quantitative modal analysis by X-ray diffraction) and by the application of various transmitted light and electron microscopic techniques. Coarse-grained intrusive bodies, dikes and volcanic rocks of alkaline, silica-saturated composition were found to be contemporarily emplaced at subvolcanic to volcanic levels forming four alkaline massifs within the Khalzan Buregte area. The whole rock composition of weakly altered magmatic rocks ranges from syenite to quartz monzonite and alkaline granite (alkali feldspar syenite to alkali feldspar granite according to their modal composition). Magmatic and at least two subsequent hydrothermal processes contributed significantly to the formation of economic concentrations of high field strength elements (HFSE) such as Zr, Hf, Nb, Ta, REE and Y in the Khalzan Buregte deposit and in the nearby Tsakhir prospect. Mixing of magma from at least three sources and the formation of potassium feldspar cumulates resulted in local enrichment of Zr, Nb and light rare earth elements (LREE) in the rocks up to sub-economic levels. There was no significant increase in Y and heavy rare earth elements (HREE) during magmatism.Multistage metasomatic alteration resulted in a pronounced chemical and mineralogical heterogeneity of associated alteration assemblages. The main hosts of Zr and Hf in the ores are zircon and other zirconium silicates (gittinsite, catapleiite-(Ca) and elpidite). The rare metals Nb and Ta are mainly contained in various types of pyrochlore (Khalzan Buregte) and, to a lesser extent, in fergusonite and other minerals (Tsakhir). A large variety of REE- and Y-bearing minerals have been identified, including oxides, fluorocarbonates and silicates. Early hydrothermal alteration by silica- and carbonate-rich fluids yielded extreme concentrations of Zr, Nb and LREE. Later alteration resulted in enrichment of Y and HREE. In the latter case, fluids were very rich in fluorine. Our preliminary genetic model assumes a carbonatite-related fluid system responsible for the early alteration that occurred late during or postdating the intrusion/extrusion of the silica-saturated magmas. A “Li-F granite-type” fluid system was active during the late alteration. The interplay of all these processes resulted in the formation of a complex, economic Zr–Nb–REE mineralisation at Khalzan Buregte.  相似文献   

2.
霍什布拉克铅锌矿床是新疆西南天山地区晚古生代碳酸盐岩容矿的重要矿床。本文采用高精度电感耦合等离子质谱(ICP-MS)对主要矿石矿物(黄铁矿、方铅矿、闪锌矿)和热液脉石矿物方解石进行了微量元素地球化学研究。研究表明,黄铁矿、方铅矿、闪锌矿、方解石具有较为相似的稀土元素特征,Eu正异常明显,弱负或弱正Ce异常指示成矿流体最初由相对氧化的条件演化为还原条件。与霍什布拉克岩体、容矿围岩的稀土元素组成进行对比后发现,硫化物及热液方解石稀土元素配分曲线部分与重结晶泥晶灰岩重合,结合前人同位素地球化学研究,认为容矿坦盖塔尔组碳酸盐岩为成矿提供了必要的成矿物质及成矿流体组分。Ga/In值显示闪锌矿为低温成矿;硫化物明显富集LREE,Hf/Sm、Nb/La和Th/La值小于1,显示铅锌成矿过程中成矿流体主体以富Cl为特征;Y/Ho、Zr/Hf和Nb/Ta值变化范围相对较小,表明成矿期流体性质相对较为稳定,基本未混入外来流体。  相似文献   

3.
相山铀矿田的成矿流体性质和来源存在争议,为进一步探讨相山铀矿田成矿流体的性质和来源,本文对相山铀矿田西部的居隆庵铀矿床和北部的沙洲铀矿床中的新鲜围岩、蚀变围岩及矿石的微量、稀土元素含量及其变化进行了研究。结果显示:在含较多热液成因萤石的居隆庵铀矿床中,从新鲜围岩到蚀变围岩到矿石,Zr、Hf含量先降低再升高;而在含少量热液萤石的沙洲铀矿床中,新鲜围岩、蚀变围岩和矿石的Zr、Hf含量基本一致。鉴于富F流体易汲取岩石中的Zr、Hf,因此,这两个矿床中不同类型样品Zr、Hf含量的不同变化趋势,可能与居隆庵铀矿床的成矿流体富F、而沙洲铀矿床的成矿流体相对贫F有关。这两个铀矿床中矿石的稀土配分曲线与其各自的新鲜及蚀变围岩的稀土配分曲线形态相似但又存在差异,说明每个矿床的新鲜围岩、蚀变围岩和矿石之间的稀土元素既具有继承性、又受到不同性质的流体的影响。居隆庵铀矿床中矿石显示Eu负异常,可能主要是继承了围岩的Eu负异常;沙洲铀矿床中矿石Eu显示弱负异常至弱正异常的特征,可能与围岩中斜长石因热液蚀变作用而释放出的Eu的进入流体有关。基于新鲜围岩、蚀变围岩及矿石的U和REE研究,推断居隆庵铀矿床成矿流体中U和REE均以F的络合物形式迁移;但沙洲铀矿床中铀矿石品位较低,可能是与流体中相对贫F有关。  相似文献   

4.
黔东八克金矿床毒砂和黄铁矿微量元素地球化学研究   总被引:2,自引:0,他引:2  
八克金矿床以矿体和围岩广泛出现毒砂为典型特征,毒砂、黄铁矿为金的主要共生矿物。对矿体及其围岩中毒砂、黄铁矿进行稀土和微量元素地球化学研究,结果显示矿体中毒砂和黄铁矿的稀土元素总量明显低于围岩的毒砂、黄铁矿,从矿体—近矿围岩—远矿围岩,毒砂、黄铁矿都出现铕的明显负异常,铈无明显异常,反映成矿流体具弱还原性;毒砂、黄铁矿微量元素含量呈现出随着成矿流体从早期到晚期的演化而减少,并普遍亏损高场强元素,富集LREE的特征;通过对黄铁矿、毒砂Hf/Sm、Nb/La和Th/La比值分析,表明八克金矿床成矿流体为富Cl型流体;从研究毒砂、黄铁矿Y/Ho、Zr/Hf和Nb/Ta比值变化范围,表明作用于围岩、矿体中的成矿流体从早期-晚期发生了改变,推测晚期成矿流体可能遭受了外来热液的混入;应用毒砂、黄铁矿中的Co/Ni比值,结合已有数据,表明成矿热液具有多来源的特点,成矿流体来源于大气降水与岩浆水不均匀混合。八克金矿是岩浆热液型的含金石英脉型金矿床。  相似文献   

5.
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO<2 (48 to 77 wt.%). The batholith has calc-alkaline features, for example a Peacock index of 57, and values for K<2O/Na2O (<1), K/Rb (60–350), Zr/Hf (30–50), Nb/Ta (2–22), Hf/Ta (up to 10), and Rb/Zr (<2) in the range of plutonic rocks found in continental magmatic ares. Wide diversity and high values of minor- and trace-element ratios, including Th/Ta (0.5–22), Th/Yb (0–27), Ba/La (0–80), etc., are attributed to intracrustal contributions. Chondrite-normalized REE patterns of metaluminous and relatively mafic intrusives have slightly negative slopes (La/Ybcn<10) and negative Eu anomalies are small orabsent. The metaluminous to peraluminous inter-mediate plutons are relatively enriched in the light REE (La/Ybcn>40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80–164), Th/Ta (<9), Rb/Cs (7–40), K/Cs (0.1–0.5), Ce/Pb (0.5–4), high values of Rb/Sr (1–18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals.  相似文献   

6.
The mobility of REE, Y and Zr during the Variscan uranium mineralization event in high‐grade metasediments of the Bohemian Massif, Czech Republic has been investigated to understand their behaviour in alkaline hydrothermal alterations. The REE patterns together with high mobility of Y and Zr point to movement of REE, Y, Zr and U by highly mineralising, oxidising basinal fluids in the Permian. Their high mobility during the origin of an economically important uranium mineralization is supported by the occurrence of Y‐ and Zr‐rich coffinite.  相似文献   

7.
Stratabound tungsten mineralization in regional metamorphic calc-silicate rocks of probably Lower Paleozoic age is described from the polymetamorphic Austroalpine Crystalline Complex (ACC) of the Eastern Alps. Scheelite-bearing calc-silicate rocks which are often associated with marbles and tourmalinites are intercalated conformably with metaclastic rocks. Alkalipoor calc-silicate rocks with high amounts of clinozoisite/ zoisite, grossular, quartz, plagioclase, etc. are the most important host rocks for tungsten mineralization. These unusual calc-silicate rocks are products of regional metaorphism and are interpreted as reaction skarns. They have formed in the presence of a water-dominated fluid phase with very low XCO2.In the Koralpe estimated P-T conditions are 650–700 °C at 5–7 kb. The mineralogical composition and the mineral zoning of the calc-silicate rocks is controlled by the degree of the Hercynian and Eoalpine metamorphism. There are no signs of graniteelated skarn formation. Tungsten preconcentration is thought to be syngenetic/syndiagenetic. It is genetically linked to exhalative hydrothermal processes in other Lower Paleozoic terrains of the Eastern Alps.  相似文献   

8.
A previous study briefly described the occurrence of a new type of Nb(Ta)-Zr(Hf)-REY-Ga (REY: rare earth elements and yttrium) polymetallic mineralization in eastern Yunnan, southwest China. In this paper, the mineralogical and geochemical features have been further advanced through a study of two regionally extensive and relatively flat-lying mineralized layers from No. XW drill core. The layers are clay-altered volcanic ash and tuffaceous clay, and are dominated by clay minerals (mixed layer illite/smectite, kaolinite, berthierine, and chamosite); with lesser amounts of quartz and variable amounts of anatase, siderite and calcite; along with trace pyrite, barite, zircon, ilmenite, galena, chalcopyrite, and REE-bearing minerals. The mineralized samples have higher Al2O3/TiO2 values (13.7–41.4) and abundant rare metal elements (Nb, Ta, Zr, Hf, REE, Ga, Th, and U) whereas less mineralized samples are rich in V, Cr, Co, and Ni and have lower Al2O3/TiO2 values (2.32–7.67). The mineralized samples also have strong negative δEu in chondrite-normalized REE patterns. Two processes are most likely responsible for the geochemical and mineralogical anomalies of the mineralized samples: airborne volcanic ash and multi-stage injection of low-temperature hydrothermal fluids. Based on paragenetic analysis, this polymetallic mineralization is derived from the interaction between alkaline volcanic ashes and subsequent percolation of low-temperature fluids. The intense and extensive alkaline volcanism of the early Late Permian inferred from this study possibly originated from the coeval Emeishan large igneous province (ELIP). This unique Nb(Ta)-Zr(Hf)-REE-Ga mineralization style has significant economic and geological potential for the study of mineralization of the lowest Xuanwei Formation.  相似文献   

9.
Titanite (sphene, CaTiSiO5) is sensitive to changes in temperature, oxygen and water fugacity, and fluid composition. In order to understand formation processes and the nature of hydrothermal fluids, various types of titanite from Cu ores at the Baogutu reduced porphyry Cu deposit were chosen for detailed study. Magmatic titanite is associated with biotite, plagioclase and K-feldspar, whereas hydrothermal titanite occurs with K-feldspar, chlorite, actinolite and calcite. The formation of hydrothermal titanite was related to hydration of igneous minerals under high fH2O, whereas the widespread replacement of ilmenite by titanite (without magnetite) indicates a relatively low oxygen fugacity. Magmatic titanite has low Al, high Fe, Y, Sn, Zr, Nb and REE contents, relative to hydrothermal titanite. On the basis of the Zr-in-titanite and Al-in-chlorite geothermometers, formation temperatures for magmatic and hydrothermal titanite are estimated to be 687–739 °C and 250–670 °C, respectively. The gradual decrease in REE, Y and Sn contents from magmatic to late hydrothermal titanite was probably caused by precipitation of REE-bearing minerals. Magmatic and hydrothermal titanites have similar chondrite-normalized REE patterns with negative Eu anomalies and relatively flat HREE. Randomly selected titanites have Nd isotopic compositions similar to the host rocks. Thus, both magmatic and hydrothermal titanite are believed to have been predominantly derived from a mantle source.  相似文献   

10.
REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determine  相似文献   

11.
Tourmaline rocks of previously unclear genesis and spatially associated with W- (Cu)-bearing calc-silicate rocks occur in Palaeoproterozoic supracrustal and felsic intrusive rocks in the Bonya Hills in the eastern Arunta Inlier, central Australia. Tourmalinisation of metapelitic host rocks postdates the peak of regional low-pressure metamorphism (M1/D1, ~500 °C, ~0.2 GPa), and occurred synkinematically between the two main deformation events D1 and D2, coeval with emplacement of Late Strangways (~1.73 Ga) tourmaline-bearing leucogranites and pegmatites. Tourmaline is classified as schorl to dravite in tourmaline–quartz rocks and surrounding tourmaline-rich alteration zones, and as Fe-rich schorl to foitite in the leucogranites. Boron metasomatism resulted in systematic depletion of K, Li, Rb, Cs, Mn and enrichment of B, and in some samples of Na and Ca, in the tourmaline rocks compared to unaltered metasedimentary host rocks. Whole-rock REE concentrations and patterns of unaltered schist, tourmalinised schist and tourmaline–quartz veins—the latter were the zones of influx of the boron-rich hydrothermal fluid—are comparable to those of post-Archaean shales. Thus, the whole-rock REE patterns of these rocks are mostly controlled by the metapelitic precursor. In contrast, REE concentrations of leucogranitic rocks are low (10 times chondritic), and their flat REE patterns with pronounced negative Eu anomalies are typical for fractionated granitic melts coexisting with a fluid phase. REE patterns for tourmalines separated from metapelite-hosted tourmaline–quartz veins and tourmaline-bearing granites are very different from one another but each tourmaline pattern mirrors the REE distribution of its immediate host rock. Tourmalines occurring in tourmaline–quartz veins within tourmalinised metasediments have LREE-enriched (LaN/YbN=6.3–55), shale-like patterns with higher REE (54–108 ppm). In contrast, those formed in evolved leucogranites exhibit flat REE patterns (LaN/YbN=1.0–5.6) with pronounced negative Eu anomalies and are lower in REE (5.6–30 ppm). We therefore conclude that REE concentrations and patterns of tourmaline from the different tourmaline rocks studied are controlled by the host rock and not by the hydrothermal fluid causing boron metasomatism. From the similarity of the REE pattern of separated tourmaline with the host rock, we further conclude that incorporation of REEs in tourmaline is not intrinsically controlled (i.e. by crystal chemical factors). Tourmaline does not preferentially fractionate specific REEs or groups of REEs during crystallisation from evolved boron- and fluid-rich granitic melts or during alteration of clastic metasediments by boron-rich magmatic-hydrothermal fluids.Editorial responsibility: J. Hoefs  相似文献   

12.
Extensive scheelite-bearing calc-silicate zones with elevated contents of chromium, nickel, copper, zinc, yttrium and barium are found in Archaean supracrustal rocks of the Nuuk area, West Greenland. The calc-silicate zones are largely stratabound and occur in mafic and ultramafic metavolcanic rocks. The calc-silicates are interpreted as amphibolite facies metamorphosed alteration zones in komatiitic intrusive and extrusive rocks as well as in tholeiitic pillow lavas. The alteration which antedates the amphibolite facies metamorphism and the main deformation of the supracrustal rocks, presumably took place at the sea-floor or immediately below the sea-floor. The brines which caused the alteration were enriched in elements such as tungsten, boron, sulphur, iron, copper and zinc. The boron was precipitated as thin tourmalinites and the iron in massive to semi-massive sulphide bodies. The scheelite in the calc-silicates is mainly found as disseminated grains, as stringers and as veinlets. Rare veins up to 15 cm wide with massive scheelite are encountered. Channel sampling revealed grades up to 0.35% W over a width of 2.5 m. Highly anomalous bromine contents up to 418 ppm and equally anomalous chlorine/bromine ratios down to 3 have been found in scheelite-bearing calc-silicates. Somewhat similar anomalous bromine contents and Cl/Br ratios have been reported from serpentinites in the Outokumpu ore body, Finland. At Mount Isa, northern Australia and in the Antimony line in the Murchinson greenstone belt, southern Africa anomalous Cl/Br ratios have been observed. The possible role of bromine in the ore-forming processes is as yet poorly understood.  相似文献   

13.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

14.
赵禹  赵玉岩  郝立波  陆继龙  赵新运 《地质通报》2014,33(10):1562-1570
成矿流体来源及性质是确定岩浆热液矿床找矿方向、建立找矿预测模型的重要依据。通过对紫金山铜金矿区内主要岩体岩石、典型矿石的对比分析,发现矿石与花岗闪长斑岩稀土元素特征相似,且花岗闪长斑岩岩体的形成年龄与成矿时间极为接近,可以为成矿流体提供足够的热量,因此推断该矿床的成矿流体最初来源于深部隐伏花岗闪长斑岩岩体分异的岩浆热液。矿石中富集Th、Nb、Ta、Zr、Hf等高场强元素和轻稀土元素,Hf/Sm值和Nb/La值都大于1,表明成矿流体具有F含量多于Cl的性质。结合前人大量的研究资料,建立了二庙沟—中寮剖面找矿预测模型。  相似文献   

15.
新疆阿尔金山东段喀腊大湾地区位于北东向阿尔金走滑断裂北侧与东西向阿尔金北缘断裂所夹持的区域,区内发育一套火山沉积岩系。对其中中基性火山岩进行较为系统的岩石地球化学研究,结果显示为LREE微弱富集型和部分平坦型两种稀土配分曲线型式,为岛弧型火山岩; 微量元素的Zr/Nb、Nb/Ta以及Zr/Hf比值分析等地球化学特征表明本区经受了地壳物质的混染作用,火山岩的La-La/Sm投影显示为部分熔融和分离结晶共同作用产生的; Hf-Tu-Ta和TFeO-Na2O+K2O-Mg的构造环境投图显示本区火山岩主要为拉斑系列的火山弧玄武岩,推测本区早古生代为板块俯冲带上盘的岛弧环境,玄武岩类以幔源为主。   相似文献   

16.
俯冲带是壳-幔物质循环的重要场所,硬玉岩可以记录这一循环过程。文中总结了俄罗斯极地乌拉尔硬玉岩的研究进展。硬玉岩呈脉状或透镜状产在蛇纹石化的方辉橄榄岩中,主要由硬玉和绿辉石组成。根据结构和颜色,硬玉可识别出两个世代。硬玉韵律环带发育,含有H2O和CH4流体包裹体,显示从流体中结晶的特征。硬玉岩中的锆石为热液锆石,锆石稀土元素中LaN/YbN=0.001~0.01,LuN/GdN=10~83,Ce/Ce*=2.8~72,显示正异常,δEu=0.53~1.02,类似于岩浆锆石。锆石的176Hf/177Hf=0.282 708~0.283 017,εHf(t)=+6~+17,类似于N-MORB的Hf同位素组成,锆石δ18O组成为5.03‰~6.04‰,平均δ18O为(5.45±0.11)‰,类似于岩浆热液和地幔的氧同位素组成。这可能反映了锆石是被俯冲带流体从途经火成岩中捕获的或者形成锆石的流体与寄主岩(方辉橄榄岩)达到了平衡。硬玉岩稀土元素配分模式近平坦或轻稀土元素略显富集,LaN/YbN比值为0.82~2.42,δEu为1.2~1.6,显示正异常,这与寄主岩稀土元素配分模式相似。富集Sr、Ba、Zr、Hf,Nb为负异常,与岛弧岩浆特征类似。(87Sr/86Sr)t为0.703 400~0.703 519(t=368 Ma),变化较小,与古海水差别明显;εNd(t)值为+0.77~+5.61,变化较大,与寄主岩(方辉橄榄岩)的Nd同位素组成类似,但不同于海水及沉积物的Nd同位素组成,表明硬玉岩的物质来源与寄主岩有明显继承关系,海水与沉积物的贡献不是主要的。矿物学和岩石学证据支持极地乌拉尔的硬玉岩主要是俯冲带流体与橄榄岩相互作用后并在其中结晶的产物。  相似文献   

17.
张少颖  张华锋 《岩石学报》2017,33(6):1872-1892
热液蚀变过程中的元素活动性与流体性质对深入理解矿物稳定性和成矿作用具有重要的意义。本文以华北克拉通中北部山西五台地区的白云叶蜡石矿为例,研究了蚀变过程中元素迁移特征和流体性质。该矿体围岩以绿片岩相酸性火山岩为主,岩性为绢云钠长石英片岩并夹有少量的绿泥钠长片岩。矿区内蚀变分带明显,可分为早期的黄铁绢英岩化(绢云母-石英-黄铁矿)和晚期叠加的叶蜡石化(叶蜡石-伊利石-高岭石-石英),而金矿化则主要发育于黄铁绢英岩化带内。Log fo2-pH相图模拟结果显示,早期黄铁绢云岩化蚀变热液具有弱酸性至偏中性(pH=5.24~5.87)和较低氧逸度(位于黄铁矿+黄铜矿稳定相区内)特征;而引起叶蜡石化蚀变的热液具有强酸性(pH=2.07~2.20)和高氧逸度(位于HM缓冲线以上)特征。质量平衡迁移分析结果显示,随着叶蜡石化蚀变作用的增强,叶蜡石矿石中的Al2O3行为较稳定,SiO2、Na2O和K2O含量相对于围岩绢云钠长石英片岩呈不同程度的迁入,而其余氧化物大量活化迁出。微量元素Nb、Ta、Th、U、Rb和Ga含量相对升高,Th/U比值略有升高;Sr、Ba、Zr、Hf明显亏损,Zr/Hf比值从34~41下降到17~22。稀土元素均发生一定程度的活化迁移,且轻稀土迁出程度更高。Y/Ho比值(28~32)高于球粒陨石的Y/Ho(26~28),表明Y-Ho在叶蜡石化蚀变过程中表现出不同的地球化学行为。Eu负异常明显增大,这可能与长石的分解关系密切。围岩绢云钠长石英片岩中金属元素含量较高且Au与As含量之间呈明显正相关性,但在叶蜡石矿石中大部分金属元素含量均低于检出限,说明金属元素在叶蜡石化蚀变作用过程中发生了强烈的活化迁移,这与岩相学上叶蜡石矿石中可见港湾状细粒赤铁矿而缺乏黄铁矿的特征吻合。本文研究结果表明叶蜡石化过程中,大量的所谓不活动元素(如P、Ti、Zr、Hf、Y和Ho等)发生了显著迁移并导致Zr/Hf和Y/Ho比值的解耦,并伴随着大量金属元素的迁出,说明叶蜡石化不利于金矿化的形成。  相似文献   

18.
Summary The F-rich Hongshan pluton in the eastern Nanling Range, southern China, is a topaz-bearing albite leucogranite. It is distinctive from other topaz-bearing felsic rocks in South China with respect to age, size, geochemical evolution and topaz mode and morphology. The Hongshan granites are highly peraluminous and characterized by high K2O/Na2O, Si, Rb, Cs, Nb, Ta and F, and low Ca, Ba, Sr, Zr, Hf, P, K/Rb, Zr/Hf and Eu/Eu*. The granites show significant trace-element variations with magma evolution, with increasing Rb, Cs, Nb, Ta, Sn, W and decreasing Sr, Ba, Zr, Hf, Y, REE, Pb, Th, K/Rb, Zr/Hf, Th/U and Eu/Eu*. These changes dominantly reflect fractional crystallization of plagioclase, biotite and accessory minerals such as zircon and monazite. The granites also exhibit a decrease in ɛNd(t = 225 Ma) from −7.9 to −11.7 with magma evolution. Modeling shows that the Nd isotopic variation could result from assimilation of the Taoxi Group wall rocks during fractional crystallization. The Hongshan pluton also shows spatial geochemical variations; the most evolved parts are located in the southeastern part of the pluton, which would be the most likely target area for rare-metal mineralization commonly associated with other topaz-bearing granites. Zircon grains from two rock types in the Hongshan body were analyzed in situ for U–Pb ages and Hf isotopic values. The concordant zircon grains mostly range from 218 to 230 Ma with an average of 224.6 ± 2.3 Ma (Indosinian). Some zircons with different internal structures and Hf isotope compositions, as well as monazite fragments, yield U–Pb ages of ca. 280 to 240 Ma, suggesting older thermal events in the studied area. The ɛHf(t) of these older zircons is strongly negative (−12.3), implying a crustal source with a Paleoproterozoic model age, similar to that for the Proterozoic Zhoutan Group. The main (∼225 Ma) zircon population exhibits less negative ɛHf(t) (−3.0 to −7.6) and Mesoproterozoic model ages, suggesting that the original magma of the Hongshan granite was generated from deeper Mesoproterozoic crust.  相似文献   

19.
We report new data on the major, minor and trace element compositions of metasedimentary quartzcordierite gneisses (QCG), an important member of the Archaean Malene supracrustal suite found throughout the Godthåbsfjord region of West Greenland. The analyzed QCG contain assemblages of quartz+cordierite+biotite±garnet±anthophyllite/gedrite±staurolite±sillimanite±plagioclase (with abundant accessory zircon, and minor rutile, monazite and allanite), and broadly resemble cordierite-orthoamphibole rocks found in a great number of other metamorphic terrains. Chemically, the QCG are characterized by: (1) high but variable SiO2 (59–87 wt%), relative enrichments in MgO, FeO, and Al2O3 (mg~0.35–0.85), and depletions in Na2O, K2O and especially CaO; (2) low concentrations of Sc, Cr, Co, Ni, and Sr; (3) high concentrations of Y, Nb, Zr, Hf, Ta, Th, U, and REE (rare earth elements)-with prominent negative Eu-anomalies in each case; (5) high concentrations of Ga (18–55 ppm), with variable Ga/Al ratios that are significantly higher than average crustal material. Low Cr and Ni, together with enriched and fractionated REE (displaying negative Eu-anomalies), distinguish the Malene QCG from published accounts of most other Archaean sedimentary rocks. Furthermore, all of the above-mentioned trace element characteristics distinguish the QCG from “ordinary” Malene clastic metasediments (quartzites, psammites, and pelites), suggesting a separate origin for the QCG. These data point towards chemically evolved felsic igneous rocks being the source of the QCG. Consequently, we propose that the Malene QCG represent metamorphosed felsic volcaniclastic sediments that underwent hydrothermal alteration by heated seawater prior to metamorphism, which resulted in gain of Mg (and Fe?), loss of alkalis and lime, and possibly Eu and Sr. The overall trace-element characteristics of the QCG (elevated Ga, Zr, Nb, REE, etc.) are features shared by A-type granites and their volcanic equivalents. Such igneous rocks may represent the ultimate source material for the QCG protolith.  相似文献   

20.
The mineralogy and the trace element compositions of hydrothermally-altered volcanic materials collected from ash fall deposits and in four debris-avalanche deposits (DADs) at La Soufrière volcano in Guadeloupe have been determined. Phreatic explosions of the 1976 eruption and flank collapse events have sampled various parts of the active and ancient hydrothermal systems of the volcano. Hydrothermal mineral assemblages (smectite + silica polymorphs ± pyrite/jarosite ± gypsum) are typical of rock alteration by low-temperature acid-sulphate fluids. High-temperature mineral assemblages are rare, indicating that phreatic explosions and flank collapse events have sampled mainly the upper parts of the volcanic edifice.Andesitic eruptive products affected by shallow hydrothermal alteration are complex assemblages of volcanic materials (glass, phenocrysts and xenocrysts with complex magmatic histories) of different ages and compositions. The use of incompatible element ratios and REE compositions normalised to an unaltered reference material overcomes the interpretation difficulties related to mass balance effects of alteration processes and the petrologic heterogeneity of the initial material.REE and other incompatible elements (Th, U, Hf, Zr) are mainly concentrated in the glassy matrix of unaltered andesitic rocks. Secondary S-bearing mineral phases (e.g., gypsum, jarosite) that have precipitated from acid-sulphate fluids do not contain substantial incompatible elements (REE, U, Th, Hf, Zr). Compositional variations of incompatible elements in hydrothermally-altered andesitic materials reflect mainly volcanic glass–smectite transformation, which is characterised by (i) strong depletion of alkalis and alkaline earths (Ba, Sr) and first transition series elements (Zn, Cu, Cr, Co, Ni), (ii) immobility of highly incompatible elements (Th, Zr, Hf, LREE) and (iii) strong depletion of MREE and HREE. The sigmoid shape of normalised REE pattern is characteristic of glass–smectite transformation by low-temperature acid-sulphate fluids. This transformation also produces significant variations in U/Th values, which offer the opportunity to date the cessation of hydrothermal alteration and to reconstruct the evolution in space and time of hydrothermal activity in a volcanic edifice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号