首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
使用有限元分析软件ANSYS,研究节点刚度对自立式角钢塔结构静力性能和风振响应的影响,主要研究内容有:采用线性滤波法中自回归AR模型和MATLAB编程模拟了脉动风速时程;建立考虑节点刚度的角钢塔模型,研究了静力和风振作用下节点刚度对结构内力和位移的影响。分析结果表明:节点刚度对角钢塔的静力性能和风振响应影响显著。  相似文献   

2.
考虑冲刷作用效应桥梁桩基地震易损性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
冲刷造成桩周土体的剥蚀将会削弱土体对桩基的侧向支撑能力,冲刷效应会对桥梁桩基的地震易损性产生影响,因此有必要对冲刷和地震共同作用下桥梁桩基的易损性进行研究。利用SAP2000软件建立三维桥梁有限元模型,通过非线性时程分析得到桥梁桩基地震响应峰值。采用概率性地震需求分析方法,建立不同冲刷深度下桥梁桩基地震易损性模型,在地震易损性函数假设为对数正态分布函数的基础上,通过回归分析得到概率模型中的参数,进而得到不同冲刷深度下桥梁桩基在不同破坏状态所对应的地震易损性曲线,并分析冲刷深度对桩基破坏概率的影响。研究结果表明:随着冲刷深度的增加,桥梁桩基在地震作用下的破坏概率显著增加。  相似文献   

3.
弦支穹顶屋盖结构的自重较轻,风荷载作用是结构设计的控制因素,应当对其风振动力响应进行研究.本文采用AR法并结合MATLAB软件对某体育馆椭圆形弦支穹顶屋盖结构的风速时程进行模拟分析,然后进行结构风振响应时程的有限元分析,得出了结构的风振系数和一些有意义的结论:其节点位移风振系数为1.74,位移风振系数随着初始预应力水平的增大而增大;风振响应过程中,拉索的预应力有所降低,靠近结构中心位置拉索的预应力损失率比靠近外部的大;初始预应力越大,预应力损失率越小;弦支穹顶结构环索预应力水平的降低会对结构的风振响应有不利的影响;弦支穹顶屋盖结构只考虑等效静力风荷载作用的结构抗风设计偏于不安全,应当考虑脉动风的作用.  相似文献   

4.
通过有限元方法进行非线性动力时程分析获取解析的易损性曲线,计算量大且耗时。本文采用一种简化的计算方法,即基于单自由度的等效线性化模型,对钢筋混凝土框架结构进行地震易损性分析,并研究了该方法在结构高度上的适用性。通过选用5种典型的等效线性化模型对3栋不同高度的钢筋混凝土框架结构进行增量动力分析(IDA),得到了不同高度的结构在不同强度地震作用下结构的反应和易损性,并与OpenSees程序的计算结果进行对比,研究了等效线性化模型应用于RC框架结构易损性分析在高度上的适用性。分析结果表明:对于10层及以下的框架结构,基于单自由度的等效线性化模型在结构地震易损性分析中具有较好的适用性;对于更高层数的结构,由于高阶振型反应对整体结构反应的影响增大,基于单自由度等效线性化模型的易损性分析结果会出现明显的偏差。  相似文献   

5.
为考虑核电厂结构参数不确定对结构地震易损性的影响,基于一次二阶矩法(First-Order Second-Moment, FOSM)进行地震易损性分析。以核电结构中混凝土材料的密度、弹性模量,泊松比和抗拉强度为不确定参数,建立有限元模型,并与试验结果对比,以验证模型的准确性。基于有限元数值模拟方法,通过增量动力法计算核电厂模型在多条地震记录下不同峰值加速度的动力响应,同时基于FOSM得到参数不确定下的对数标准差,进而得到核电厂结构考虑参数不确定的地震易损性曲线。结果表明,结构参数的不确定对核电结构有一定的影响,未考虑参数不确定的地震易损性结果会低估结构的失效概率。该方法可为核电结构基于参数不确定下的易损性分析提供一定的理论依据与实用价值。  相似文献   

6.
为研究半刚接钢框架内填暗竖缝RC墙结构(简称"PSRCW"结构)在近场脉冲地震作用下的易损性能,基于增量动力时程分析方法建立了4个按MECE能量谱设计的PSRCW结构在不同性态水平下的地震易损性曲线,重点考察了层数的影响。研究结果表明:在近场脉冲地震作用下,PSRCW结构对应于多遇地震水准达到基本完好(IO)状态的超越概率在2.76%~5.98%之间,偶遇地震水准达到中等破坏(LS)状态的超越概率在16.88%~37.35%之间,罕遇地震水准达到倒塌(C)状态的超越概率在4.86%~39.92%之间。层数对PSRCW结构在近场脉冲地震作用下的易损性曲线有显著影响,随着层数的增加PSRCW结构达到某一性态水平的超越概率也呈增大趋势。  相似文献   

7.
复杂高层结构基于增量动力分析法的地震易损性分析   总被引:4,自引:0,他引:4  
增量动力分析法(Incremental Dynamic Analysis,IDA)是一种以动力弹塑性时程分析为基础的参数分析方法,计算结构在不同地震动强度作用下的响应,能够反映结构体系随地震动强度的变化,经历弹性、弹塑性直至倒塌的全过程性能.而建筑结构的地震易损性是指在不同强度地震作用下结构达到或超过某种极限状态的条件概率.因此,增量动力分析的结果提供了结构地震易损性分析所需的数据.本文在增量动力分析的基础上,结合地震易损性分析,提出基于IDA的地震易损性分析方法,并采用该方法对某复杂超限高层结构进行抗震性能评估,得出该结构在3个地震水准下,超越5个极限状态的概率.研究表明,基于增量动力分析的易损性分析结果,可为预测重大工程结构的地震破坏和损失提供有力的科学依据.  相似文献   

8.
单向张弦梁结构风振响应的时域分析   总被引:1,自引:0,他引:1  
张弦梁屋盖结构自重轻,地震作用下的动力问题不是结构设计的控制因素,但是在风荷载作用下结构的动力响应较为显著,在设计中应给予足够重视。本文首先利用Matlab编程工具,模拟结构的风速时程曲线,然后利用有限元软件中的瞬态动力学分析模块对这种结构进行动力时程分析,讨论其在脉动风荷载作用下的动力响应,并将结果和频域法脉动风荷载的分析结果进行对比,验证了计算结构的可靠性。得到一些有意义的结论,供张弦梁结构的工程应用参考。  相似文献   

9.
基于地震动加速度峰值和速度峰值比值(PGA/PGV)选用了13条不同频谱的地震波,对不同参数条件下多层基础隔震结构地震响应进行非线性时程分析,得到了不同地震动作用下隔震结构模型的地震反应。计算结果表明:随PGA/PGV增大,隔震结构减震率整体上呈增大趋势,但是PGA/PGV对减震率的影响程度还受结构自振周期,上部结构侧移刚度的影响,应综合考虑。  相似文献   

10.
砌体结构的震害现象表明楼层侧向刚度不均匀分布是造成其破坏的重要原因之一。本文开展楼层侧向刚度变化对结构易损性的影响分析。以3层和6层砌体结构为例,采用等效多自由度层间剪切模型,基于非线性动力时程分析,定量研究了竖向刚度不规则性对砌体结构易损性的影响。以结构最大层间位移角为地震反应参数,借助增量动力分析及回归拟合方法,建立了基于峰值加速度的结构易损性曲线。通过改变楼层的侧向刚度值来模拟薄弱层,研究了楼层刚度变化对结构不同破坏状态超越概率的影响。通过改变底层与二层的侧向刚度比,分析了底部刚度突变对结构不同破坏状态超越概率分布的影响。研究表明:与规则结构相比,当刚度突变位于结构底层时,在地震作用下结构易损性相对较高;随着底层与二层的侧向刚度比从0.5增大至1.2,结构易损性逐渐降低。当刚度比为1.5时,结构薄弱层由底层转移至二层,结构整体易损性增加;当底层与二层侧向刚度比小于1时,结构倒塌易损性要显著高于规则结构。  相似文献   

11.
考虑土-结构相互作用的西安钟楼地震反应分析   总被引:2,自引:0,他引:2  
为探讨土-结构相互作用对西安钟楼地震反应的影响,建立了钟楼上部木结构-台基-地基三维有限元模型,基于粘-弹性人工边界条件,利用振型分解反应谱法进行了地震反应分析。结果表明,考虑相互作用木结构2层相对位移反应增大了2.12倍,台基相对于地面间的相对位移增大了44%。因此,在对钟楼结构进行地震反应分析时必须考虑土-结构相互作用。  相似文献   

12.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

13.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

14.
以某典型的12层钢筋混凝土框架结构作为研究对象,研究基于非线性动力时程分析和地震动参数的RC框架结构易损性分析方法。首先采用静力pushover分析判定结构薄弱层,并确定结构性能(capacity)参数;然后应用非线性动力时程分析估计结构地震反应,研究以峰值加速度和基本周期加速度反应谱作为地震动参数结构反应的不确定性,并进一步分析结构地震需求(demand)参数与地震动参数的关系;在此基础上,分别建立该结构基于峰值加速度和加速度反应谱的易损性曲线,通过考虑场地条件对地震动特性的影响,研究场地条件对结构易损性的影响,结果表明不同场地条件下的结构易损性曲线有一定差异。应用本文方法,根据新一代地震区划图或地震安全性评价确定的地震动参数,可以直接估计结构在未来地震中出现不同破坏的概率,这在结构的抗震性能评估和地震损失预测中有一定意义。  相似文献   

15.
整理并分析汉中地区的地震背景、地震动参数和地质灾害,调查区域内地震动参数有差异的9类样本行政镇的931栋典型农村房屋,研究典型农村房屋的结构类型、抗震概念设计和建造场地等因素对房屋抗震性能的影响。结果表明:汉中地区地质构造复杂,深大断裂发育,94.7%的区域为灾害易发区,存在4个地震烈度异常区;农村既有房屋结构类型有土木结构、砖木结构、砖混结构和框架结构,其中砖木结构和砖混结构是主要的抗震结构类型,框架结构是新型抗震结构类型;区域内农村房屋的建造场地条件危险性大并且抗震概念设计不足,房屋震害严重,村民的工程地质和地震地质等相关知识匮乏。该研究可为村镇房屋的防震减灾工作提供参考。  相似文献   

16.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   

17.
余震的发生会造成结构的累积损伤,不同类型的主余震序列地震动对结构的影响有所差异。鉴于此,以主震卓越周期小于或接近余震卓越周期为基本原则,确定了最不利主余震序列地震动。选择4层RC框架结构为研究对象,在增量动力分析的基础上,定义了4个性能水平,以此来研究该结构的易损性。依据破坏状态概率和震害指数,得到7度多遇、7度设防和7度罕遇地震的易损性指数。研究结果表明:依据我国规范设计的RC框架结构的4个性能水平的量化指标限值依次为1/495、1/263、1/108和1/45,余震的出现会加剧结构的破坏状态。当以易损性指数作为评价指标时,可认为该结构能够满足小震不坏、中震可修和大震不倒的抗震设防目标。  相似文献   

18.
考虑到桥梁地震易损性分析中场地条件影响的不确定性,本文主要针对流水冲刷环境、可液化场地、近断层场地、氯盐侵蚀环境和冻土场地等特殊复杂场地条件对桥梁结构地震易损性的影响特征和机理进行了总结归纳,并提出了尚待进一步研究的关键问题.结果 表明:特殊场地地震响应的复杂性和桥梁结构的特殊性相叠加,给复杂场地条件下桥梁的抗震性能评...  相似文献   

19.
为研究高层RC框架结构罕遇地震下的易损性,设计了一个7度区典型11层RC框架结构。采用IDA方法进行时程分析,以地震动峰值地面加速度和结构第一自振周期对应的谱加速度为地震动强度指标,最大层间位移角为结构损伤指标,分别得到了单一地震动强度和双地震动强度参数下的IDA曲线和失效概率,绘制了双地震动强度参数下易损性曲面,并对单一地震动强度和双地震动强度参数下的易损性分析结果进行了对比。结果表明:罕遇地震下,采用双地震动强度参数结构失效概率明显低于采用单一地震动强度参数结构失效概率;对高层RC框架结构,采用双地震动强度参数进行易损性分析反映的地震动信息更全面;采用双地震动强度参数得到的结构失效概率公式更能真实量化不同强度地震作用下结构的失效概率。  相似文献   

20.
The height of 101‐storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega‐frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega‐diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two‐dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter‐storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom‐occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号