首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
山体效应及其对林线分布的影响(英文)   总被引:7,自引:2,他引:5  
The concept of mass elevation effect(massenerhebungseffect,MEE) was intro-duced by A.de Quervain about 100 years ago to account for the observed tendency for temperature-related parameters such as tree line and snowline to occur at higher elevations in the central Alps than on their outer margins.It also has been widely observed in other ar-eas of the world,but there have not been significant,let alone quantitative,researches on this phenomenon.Especially,it has been usually completely neglected in developing fitting mod-els of timberline elevation,with only longitude or latitude considered as impacting factors.This paper tries to quantify the contribution of MEE to timberline elevation.Considering that the more extensive the land mass and especially the higher the mountain base in the interior of land mass,the greater the mass elevation effect,this paper takes mountain base elevation(MBE) as the magnitude of MEE.We collect 157 data points of timberline elevation,and use their latitude,longitude and MBE as independent variables to build a multiple linear regres-sion equation for timberline elevation in the southeastern Eurasian continent.The results turn out that the contribution of latitude,longitude and MBE to timberline altitude reach 25.11%,29.43%,and 45.46%,respectively.North of northern latitude 32°,the three factors’ contribu-tion amount to 48.50%,24.04%,and 27.46%,respectively;to the south,their contribution is 13.01%,48.33%,and 38.66%,respectively.This means that MBE,serving as a proxy indi-cator of MEE,is a significant factor determining the elevation of alpine timberline.Compared with other factors,it is more stable and independent in affecting timberline elevation.Of course,the magnitude of the actual MEE is certainly determined by other factors,including mountain area and height,the distance to the edge of a land mass,the structures of the mountains nearby.These factors need to be included in the study of MEE quantification in the future.This paper could help build up a high-accuracy and multi-scale elevation model for alpine timberline and even other altitudinal belts.  相似文献   

2.
Alpine timberline, as the "ecologica tion of scientists in many fields, especially in transition zone," has long attracted the atten- recent years. Many unitary and dibasic fitting models have been developed to explore the relationship between timberline elevation and latitude or temperature. However, these models are usually on regional scale and could not be applied to other regions; on the other hand, hemispherical-scale and continental-scale models are usually based on about 100 timberline data and are necessarily low in precision. The present article collects 516 data sites of timberline, and takes latitude, continentality and mass elevation effect (MEE) as independent variables and timberline elevation as dependent variable to develop a ternary linear regression meteorological data released by WorldClim and model. Continentality is calculated using the mountain base elevation (as a proxy of mass elevation effect) is extracted on the basis of SRTM 90-meter resolution elevation data. The results show that the coefficient of determination (R2) of the linear model is as high as 0.904, and that the contribution rate of latitude, continentality and MEE to timberline elevation is 45.02% (p=0.000), 6.04% (p=0.000) and 48.94% (p=0.000), respectively. This means that MEE is simply the primary factor contributing to the elevation distribution of timberline on the continental and hemispherical scales. The contribution rate of MEE to timberline altitude dif- fers in different regions, e.g., 50.49% (p=0.000) in North America, 48.73% (p=0.000) in the eastern Eurasia, and 43.6% (p=0.000) in the western Eurasia, but it is usually very high.  相似文献   

3.
The mass elevation effect(MEE) is a thermal effect, in which heating produced by long wave radiation on a mountain surface generates atmospheric uplift, which has a profound impact on the hydrothermal conditions and natural geographical processes in mountainous areas. Based on multi-source remote sensing data and field observations, a spatial downscaling inversion of temperature in the Tianshan Mountains in China was conducted, and the MEE was estimated and a spatio-temporal analysis was conduct...  相似文献   

4.
For estimating the altitude-distribution pattern of carbon stocks in desert grasslands and analyzing the possible mechanism for this distribution, a detailed study was performed through a series of field vegetation surveys and soil samplings from 90 vegetation plots and 45 soil profiles at 9 sites of the Hexi Corridor region, Northwestern China. Aboveground, belowground, and litter-fall biomass-carbon stocks ranged from 43 to 109, 23 to 64, and 5 to 20 g/m2, with mean values of 80.82,44.91, and 12.15 g/m2, respectively. Soil-carbon stocks varied between 2.88 and 3.98 kg/m2, with a mean value of 3.43 kg/m2 in the 0–100-cm soil layer. Both biomass-and soil-carbon stocks had an increasing tendency corresponding to the altitudinal gradient. A significantly negative correlation was found between soil-carbon stock and mean annual temperature, with further better correlations between soil-and biomass-carbon stocks, and mean annual precipitation. Furthermore, soil carbon was found to be positively correlated with soil-silt and-clay content, and negatively correlated with soil bulk density and the volume percent of gravel. It can be concluded that variations in soil texture and climate condition were the key factors influencing the altitudinal pattern of carbon stocks in this desert-grassland ecosystem. Thus, by using the linear-regression functions between altitude and carbon stocks, approximately 4.18 Tg carbon were predicted from the 1,260 km2 of desert grasslands in the study area.  相似文献   

5.
The compilation of 1:250,000 vegetation type map in the North-South transitional zone and 1:50,000 vegetation type maps in typical mountainous areas is one of the main tasks of Integrated Scientific Investigation of the North-South Transitional Zone of China.In the past,vegetation type maps were compiled by a large number of ground field surveys.Although the field survey method is accurate,it is not only time-consuming,but also only covers a small area due to the limitations of physical environment conditions.Remote sensing data can make up for the limitation of field survey because of its full coverage.However,there are still some difficulties and bottlenecks in the extraction of remote sensing information of vegetation types,especially in the automatic extraction.As an example of the compilation of 1:50,000 vegetation type map,this paper explores and studies the remote sensing extraction and mapping methods of vegetation type with medium and large scales based on mountain altitudinal belts of Taibai Mountain,using multi-temporal high resolution remote sensing data,ground survey data,previous vegetation type map and forest survey data.The results show that:1)mountain altitudinal belts can effectively support remote sensing classification and mapping of 1:50,000 vegetation type map in mountain areas.Terrain constraint factors with mountain altitudinal belt information can be generated by mountain altitudinal belts and 1:10,000 Digital Surface Model(DSM)data of Taibai Mountain.Combining the terrain constraint factors with multi-temporal and high-resolution remote sensing data,ground survey data and previous small-scale vegetation type map data,the vegetation types at all levels can be extracted effectively.2)The basic remote sensing interpretation and mapping process for typical mountains is interpretation of vegetation type-groups→interpretation of vegetation formation groups,formations and subformations→interpretation and classification of vegetation types&subtypes,which is a combination method of top-down method and bottom-up method,not the top-down or the bottom-up classification according to the level of mapping units.The results of this study provide a demonstration and scientific basis for the compilation of large and medium scale vegetation type maps.  相似文献   

6.
The hydrological characteristics of the Heihe River Basin in the arid inland area of northwest China were investigated.The spatial distribution of annual precipitation in the basin indicates that it decreases from east to west and from south to north,and increases with elevation by a gradient of 24.4 mm per hundred meters below 2,810 m a.s.l.,but decreases with elevation by that of 37.0 mm per hundred meters above 2,810 m a.s.l.For the last 50 years,the mountain runoff of the ba-sin has a tendency of increase.Except in the mountain area,the aridity is very high in the basin,and the aridity index ranges from 1.6 to 7.0 at the piedmont,to 9.0~20.0 in the midstream area and up to 40.0 in the downstream Ejin region.It is estimated for the last 50 years that a 1oC increment of annual temperature causes a 21.5 mm increase of evaporation in the mountain area,and the equivalent reduction of mountain runoff is 0.215×109 m3/yr at the Yingluoxia Hydrometric Sta-tion.The estimation shows also that a 1oC increment of annual temperature causes 1,842 mm increase of farmland evapotranspiration in the midstream area,an equivalent of 0.298×109 m3/yr more water consumption.The anthropogenic influence on the hydrological processes and water resources is then discussed.  相似文献   

7.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

8.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29 ℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

9.
近5年青海省植被覆盖变化的遥感监测   总被引:3,自引:2,他引:1  
This paper used five years (2001-2006) time series of MODIS NDVI images with a 1-km spatial resolution to produce a land cover map of Qinghai Province in China. A classification approach for different land cover types with special emphasis on vegetation, especially on sparse vegetation, was developed which synthesized Decision Tree Classification, Supervised Classification and Unsupervised Classification. The spatial distribution and dynamic change of vegetation cover in Qinghai from 2001 to 2006 were analyzed based on the land cover classification map and five grade elevation belts derived from Qinghai DEM. The result shows that vegetation cover in Qinghai in recent five years has been some improved and the area of vegetation was increased from 370,047 km^2 in 2001 to 374,576 km^2 in 2006. Meanwhile, vegetation cover ratio was increased by 0.63%. Vegetation cover ratio in high mountain belt is the largest (67.92%) among the five grade elevation belts in Qinghai Province. The second largest vegetation cover ratio is in middle mountain belt (61.80%). Next, in the order of the decreasing vegetation cover ratio, the remaining grades are extreme high mountain belt (38.98%), low mountain belt (25.55%) and flat region belt (15.46%). The area of middle density grassland in high mountain belt is the biggest (94,003 km^2), and vegetation cover ratio of dense grassland in middle mountain belt is the highest (32.62%), and the increased area of dense grassland in high mountain belt is the greatest (1280 km^2). In recent five years the conversion from sparse grass to middle density grass in high mountain belt has been the largest vegetation cover variation and the converted area is 15931 km^2.  相似文献   

10.
Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon's low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9% for the negative elevation angle of 0.36° compared with the elevation angle of 0.49° . Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close sea wave clutter which interfered with the asses  相似文献   

11.
Yao  Yonghui  Hu  Yufan  Kou  Zhixiang  Zhang  Baiping 《地理学报(英文版)》2020,30(9):1523-1533
The Qinling Mountains is not only the geographical boundary between North and South China,but also the boundary between subtropical and warm temperate zones.It plays an important role in the geo-ecological pattern of China.However,there is controversy about the specific location of this geographical boundary in academic community due to the complexity,transition and heterogeneity of the transitional zone,as well as the differences in the delimitation indicators and research purposes.To further reveal the characteristics of the North-South transitional zone and clarify the specific location of the geo-ecological boundary between North and South China,combined with SRTM topographic data,temperature and precipitation data,Pinus massoniana forest and Pinus tabulaeformis forest,which represent subtropical coniferous forest in South China and temperate coniferous forest in North China respectively,were chosen to analyze their spatial distributions in the Qinling-Daba Mountains and the climatic conditions at their boundary with the climatic indexes of annual precipitation,the coldest month(January) average temperature,the warmest month(July) average temperature and the annual average temperature.The results show that:(1) Pinus massoniana and Pinus tabulaeformis forests and the climate indicators of their boundary can be used as one of the vegetation-climate indexes for the delimitation of subtropical and warm temperate zones.The boundary between the subtropical coniferous forest(Pinus massoniana forest) and temperate coniferous forest(Pinus tabulaeformis forest) is located along the south slope of Funiu Mountain to the north edge of Hanzhong Basin(the south slope of Qinling Mountains) at an altitude of 1000–1200 m,where the climatic indictors are stable:the annual precipitation is about 750–1000 mm,the annual average temperature is about 12–14℃,the coldest monthly average temperature is 0–4℃,and the warmest monthly average temperature is about 22–26℃.(2) It can be more scientifically to delimitate the boundary of subtropical and warm temperate zones in China by comprehensively considering the vegetation-climate indicators.Additionally,the boundary between subtropical and warm temperate zones in Qinling-Daba Mountains should be a transitional zone consisting of the boundaries of coniferous forests,broad-leaved forests and shrubs between subtropical and warm temperate zones.The results provide a scientific basis for the selection of delimitation index of subtropical and warm temperate zones.  相似文献   

12.
The quantity and spatial pattern of farmland has changed in China, which has led to a major change in the production potential under the influence of the national project of ecological environmental protection and rapid economic growth during 1990–2010. In this study, the production potential in China was calculated based on meteorological, terrain elevation, soil and land-use data from 1990, 2000 and 2010 using the Global Agro-ecological Zones model. Then, changes in the production potential in response to farmland changes from 1990 to 2010 were subsequently analyzed. The main conclusions were the following. First, the total production potential was 1.055 billion tons in China in 2010. Moreover, the average production potential was 7614 kg/ha and showed tremendous heterogeneity in spatial pattern. Total production in eastern China was high, whereas that in northwestern China was low. The regions with high per unit production potential were mainly distributed over southern China and the middle and lower reaches of the Yangtze River. Second, the obvious spatiotemporal heterogeneity in farmland changes from 1990 to 2010 had a significant influence on the production potential in China. The total production potential decreased in southern China and increased in northern China. Furthermore, the center of growth of the production potential moved gradually from northeastern China to northwestern China. The net decrease in the production potential was 2.97 million tons, which occupied 0.29% of the national total actual production in 2010. Third, obvious differences in the production potential in response to farmland changes from 1990 to 2000 and from 2000 to 2010 were detected. The net increase in the production potential during the first decade was 10.11 million tons and mainly distributed in the Northeast China Plain and the arid and semi-arid regions of northern China. The net decrease in the production potential during the next decade was 13.08 million tons and primarily distributed in the middle and lower reaches of the Yangtze River region and the Huang-Huai-Hai Plain. In general, the reason for the increase in the production potential during the past two decades might be due to the reclamation of grasslands, woodlands and unused land, and the reason for the decrease in the production potential might be urbanization that occupied the farmland and Green for Grain Project, which returned farmland to forests and grasslands.  相似文献   

13.
From 2008 to 2010,a total of 15 snow pit samples were collected from 13 mountain glaciers in western China.In this study these samples are used to determine the spatial distribution of insoluble particle concentrations and dust deposition fluxes in western China.The results show that the mass concentrations of insoluble particles exhibit high spatial variation and strongly decrease(by a factor of approximately 50) from the north(Tienshan Mountains) to the south(Himalayas).However,the insoluble particles concentrations at the southeastern Tibetan Plateau(TP) sites are also high and approximately 30 times greater than those in the Himalayas.The spatial distribution of the dust flux is similar to that of the mass concentrations;however,the high dust deposition rate in the southeastern TP is very significant as a result of the extensive snow accumulation(precipitation) in this region.The average sizes of the insoluble particles at each site generally exhibit bimodal distributions with peaks at approximately 5 μm and 10 μm,which can be explained as resulting from dust emissions from regional and local sources,respectively.The enrichment factors for most of the elements measured in insoluble particles are less than 10 at all of the study sites,indicating primarily crustal sources.However,the sites located in the peripheral mountains of western China,such as the Tienshan Mountains and the Himalayas,are characterized by high levels of certain enrichment elements(e.g.,Cu,Zn,Cr,and V) indicative of sources related to the long-range transport of pollutants.  相似文献   

14.
Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southern slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which accounts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid-June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southern monsoon. Thus, precipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of δ 18 O, temperature, and precipitation with GNIP δ 18 O data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer monsoon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temperature effect. A temporal rate of temperature effect is derived as 0.04‰ per year which indicates a dry signal of atmospheric condition and a temperature relation δ 18 O=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as δD=(4.36±0.3)δ 18 O+(15.66±1.2) and δD=(6.91±0.2)δ 18 O (7.92±2.26) from lab samples result, and δD=9.2δ 18 O+11.725 and δD=8.53δ 18 O+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ 18 O and δD from GNIP data are obtained as 0.002‰/m and 0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.  相似文献   

15.
中国亚热带丘陵山区植被沿海拔梯度分布格局(英文)   总被引:3,自引:0,他引:3  
Knowledge of vegetation distribution patterns is very important.Their relationships with topography and climate were explored through a geographically weighted regression(GWR) framework in a subtropical mountainous and hilly region,Minjiang River Basin of Fujian in China.The HJ-1 satellite image acquired on December 9,2010 was utilized and NDVI index was calculated representing the range of vegetation greenness.Proper analysis units were achieved through segregation based on small sub-basins and altitudinal bands.Results indicated that the GWR model was more powerful than ordinary linear least square(OLS) regression in interpreting vegetation-environmental relationship,indicated by higher adjusted R 2 and lower Akaike information criterion values.On one side,the OLS analysis revealed dominant positive influence from parameters of elevation and slope on vegetation distribution.On the other side,GWR analysis indicated that spatially,the parameters of topography had a very complex relationship with the vegetation distribution,as results of the various combinations of environmental factors,vegetation composition and also anthropogenic impact.The influences of elevation and slope generally decreased,from strongly positive to nearly zero,with increasing altitude and slope.Specially,most rapid changes of coefficients between NDVI and elevation or slope were observed in relatively flat and low-lying areas.This paper confirmed that the non-stationary analysis through the framework of GWR could lead to a better understanding of vegetation distribution in subtropical mountainous and hilly region.It was hoped that the proposed scale selection method combined with GWR framework would provide some guidelines on dealing with both spatial(horizontal) and altitudinal(vertical) non-stationarity in the dataset,and it could easily be applied in characterizing vegetation distribution patterns in other mountainous and hilly river basins and related research.  相似文献   

16.
An abrupt ice and snow storm disaster which occurred in the spring of 2008 se-verely destroyed forests over a surprisingly large portion of southern China.A transect crossing Jinggang Mountain-Jitai Basin-Yushan Mountain-Wuyi Mountain was selected as the study area.The authors integrated field data collected in two field surveys to analyze the impacts of the disturbance on forests.The following results were obtained.(1) The extent of damage to plantations along the transect decreased in the order of slash pine > masson pine > mixed plantation > Chinese fir.Slash pine is an introduced species from southern America which is characterized by fast growth,low wood quality and rich oleoresin,and showed a damage rate of 61.3% of samples,of which 70.4% cannot recover naturally.Masson pine is the native pioneer species of forests with harder wood,and 52.5% were damaged due to turpentine,of which 60.9% cannot recovery naturally.Chinese fir is a local tree species and samples showed a rate of 46% and a relative rate of 32.5%,lower than the mixed plantation.(2) From west to east along the transect,we can see that evergreen broad-leaved forest of the western transect on Jinggang Mountain showed the lightest damage extent,and a Cryp-tomeria plantation at an altitude of 700 m was severely destroyed while Chinese fir showed light damage below 700 m and relatively severe damage above 900 m.Masson pine and slash pine in the central transect in Jitai Basin were damaged severely due to turpentine ac-tivities,and closed natural secondary deciduous broad-leaved forest was damaged severely due to high ice and snow accumulation on intertwined shrubs.Masson pine aerial-seeding plantations below 400 m along the eastern transect in Xingguo and Ningdu counties were nearly undamaged for small tree sizes,and Chinese fir at 500-900 m altitude showed a lighter damage extent.However,masson pine which was distributed above 400 m and planted in the 1960s,was severely damaged due to turpentine.  相似文献   

17.
This paper, concerning uneven development in China, empirically analyzes the core-periphery gradient of manufacturing industries across provinces (autonomous regions, municipalities), and assesses the extent to which these provinces have changed in recent years. Since China's reform and opening-up, the spatial structure of the economy has pre- sented a significant core-periphery pattern, the core evidently skewing towards east-coastal areas. With the deepening of market reforms and expansion of globalization, industrial loca- tion is gradually in line with the development advantages of provinces. The core provinces specialize in those industries characterized by strong forward and backward linkages, as well as a high consumption ratio, a high degree of increasing returns to scale, and labor or hu- man-capital intensity. However, it is the opposite with regard to peripheral provinces, in addi- tion, energy intensive industries are gradually concentrating in these areas. To a certain de- gree, the comparative advantage theory and new economic geography identify the underlying forces that determine the spatial distribution of manufacturing industries in China. This paper indicates that the industrialization of regions along different gradients becomes unsynchro- nized will be a long-term trend. Within a certain period, regions are bound to develop indus- trial sectors in line with their respective characteristics and development stage. A core-periphery pattern of industries also indicates that industrial development differentials across regions arise because of not only the uneven distribution of industries but also the inconsistent evolving trends of industrial structure for each province.  相似文献   

18.
This paper, concerning uneven development in China, empirically analyzes the core–periphery gradient of manufacturing industries across provinces(autonomous regions, municipalities), and assesses the extent to which these provinces have changed in recent years. Since China's reform and opening-up, the spatial structure of the economy has presented a significant core–periphery pattern, the core evidently skewing towards east-coastal areas. With the deepening of market reforms and expansion of globalization, industrial location is gradually in line with the development advantages of provinces. The core provinces specialize in those industries characterized by strong forward and backward linkages, as well as a high consumption ratio, a high degree of increasing returns to scale, and labor or human-capital intensity. However, it is the opposite with regard to peripheral provinces, in addition, energy intensive industries are gradually concentrating in these areas. To a certain degree, the comparative advantage theory and new economic geography identify the underlying forces that determine the spatial distribution of manufacturing industries in China. This paper indicates that the industrialization of regions along different gradients becomes unsynchronized will be a long-term trend. Within a certain period, regions are bound to develop industrial sectors in line with their respective characteristics and development stage. A core–periphery pattern of industries also indicates that industrial development differentials across regions arise because of not only the uneven distribution of industries but also the inconsistent evolving trends of industrial structure for each province.  相似文献   

19.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation–area ratio (AAR), maximum elevation of lateral moraines (MELM), toe–to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ELA △ values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.  相似文献   

20.
Snowmelt water is an essential runoff source of some alpine rivers in China. This study selected the Upper Burqin River(UBR), a typical snow-fed river, to quantitatively assess the runoff contributions of different components, as well as the causes of runoff variations under the background of cryosphere change and global warming. Based on the spatial-temporal distributions of snow and glaciers during a year, as well as the altitudinal variations of 0 ℃ isotherm, the high flow hydrographs in UBR was separated into two parts: seasonal snowmelt flood of lower altitudes(3,000 m) and glacier-snow melt flow in high altitudes(3,000-4,296 m). The daily baseflow hydrograph of UBR was separated by the digital filtering technique. It is concluded that the contributions of snowmelt flow, glacier melt flow, and baseflow(includes rainfall runoff component) to total annual flow volumes are 27.2%(±2.7%), 8.5%(±1.7%), and 64.3%(±3.0%), respectively. The speed of air temperature rise in spring may be the controlling factor for monthly snowmelt flow distributions in the snow-fed river. The volume of snowmelt was determined by spring precipitation(SP) and previous winter's precipitation(PWP). The PWP changes can explain 43.7% of snowmelt changes during 1981-2010 in UBR, while snowmelt change in 1957-1980 is more impacted by SP. The determining factor of snowmelt variation was changed from SP to PAP during the recent decades. Precipitation in current year, excluding previous year's rainfall and snowfall, can only explain 32%-70% of the variability in total runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号