首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
To better understand the negative polarization and brightness opposition effects observed on airless celestial bodies, we carried out simultaneous photometric and polarimetric measurements of laboratory samples that simulate the structure of planetary regoliths. Computer modeling of shadow-hiding and coherent backscatter in regolith-like media are also presented. The laboratory investigations were carried out with a photometer/polarimeter at phase angles covering 0.2°-4° and wavelengths of 0.63 and 0.45 μm. We studied samples that characterize a variety of microscopic structures and albedos. A particle-size dependence of the negative branch of polarization for powdered dielectric surfaces was found. Colored samples such as a powder Fe2O3 exhibit a very prominent wavelength dependence of the photometric and polarimetric opposition phenomena. Metallic powders usually exhibit a wide branch of the negative polarization independent of the size of particles. For fine dielectric powders, both opposition phenomena become more prominent when the samples were compressed. Our computer modeling based on ray tracing in particulate media shows that shadow-hiding affects the negative polarization only in combination with the coherent backscatter enhancement. Modeling reveals that scattering orders higher than second contribute to negative polarization even in dark particulate surfaces. Our model qualitatively reproduces the effects of varying sample-compression that we observed in the laboratory. Our experimental and computer modeling studies mutually confirm that the degree of polarization for highly reflective dielectric surfaces depends not only on phase angle but also on surface tilt. Even at exactly zero phase the degree of polarization for tilted surfaces can be nonzero. A tilt of the surface normal to the scattering plane gives a parallel shift of the negative polarization branch to large values of |P|. The tilt in the perpendicular plane gives the same shift in the direction of positive polarization. At exactly zero phase angle, a celestial body of irregular shape can exhibit nonzero polarization even in integral polarimetric observations.  相似文献   

2.
The explanation of the opposition effects observed in brightness and polarization in different celestial bodies and laboratory samples is still far from being complete. The shadow hiding and coherent backscattering mechanisms are mentioned most frequently in this connection. In the present work, we consider one more scattering mechanism—the interaction of particles in the near field—and its influence on the brightness and polarization of light scattered by ensembles of particles at small phase angles. First, we analyze two manifestations of this mechanism: the field inhomogeneity in the vicinity of the scatterers and the shielding of particles by each other at distances compared with their sizes. Then, we use the model regolith described as an ensemble of clusters as constituents and compare the contributions of the coherent backscattering and the near-field effect to the intensity and polarization of light when the porosity of the ensemble is varied. The modeling confirms that the phase dependences of the intensity and polarization of light scattered by complex structures in the backscattering domain is mainly caused by these two mechanisms. The coherent backscattering works more effectively in sparse media, while the near-field effect manifests itself in more compact ensembles of wavelength-sized particles. However, it is difficult to distinguish quantitatively their contributions, even in models of simple structures. A number of observations, especially of moderate- and low-albedo objects, can be explained only by invoking the near-field effect.  相似文献   

3.
Interpretation of photometric and polarimetric observations of atmosphereless celestial bodies faces the problems connected with both the insufficient accuracy and level of details in groundbased observations and the current state of the theory of the multiple scattering of light. In application to sparse media, where the electromagnetic waves, propagating between the scatterers, can be considered as spherical (the socalled far-field approximation), this theory is rather well developed for both the diffuse and coherent components of the scattered radiation. In this paper, we show that this theory can be also successfully applied to the measurements of polarization of light scattered by densely packed, though nonabsorbing or weakly absorbing, media. For this purpose, we calculated the models for a semi-infinite layer of the medium composed of randomly oriented clusters of spherical particles and compared them with the data of laboratory and astronomical measurements. The potential of the present approach is illustrated by an example of the interpretation of the polarization measurements of the ice satellites of Saturn—Rhea and Enceladus—which allowed some properties of the surface of these celestial bodies to be estimated. In particular, the ratio of the surface area that makes no contribution to the negative polarization of light reflected at small phase angles to the area producing the negative polarization branch was found. Under the assumption of the same albedo of these areas, this ratio turned out to be 3.31–3.66 and 1.7–3.8 for Rhea and Enceladus, respectively. For Enceladus, it is difficult to obtain a sufficiently narrow range of the estimated parameters, since the number of measurement points in the phase dependence of polarization of this satellite is small. For the surface of Rhea, the estimated packing density of particles, participating in the opposition effects, is approximately 15%, while their smallest size is of the order of the wavelength of visible light.  相似文献   

4.
A method for interpretation of asteroid phase curves, based on empirical modeling and laboratory measurements, is outlined and preliminary results are presented. A linear-exponential function is used to describe the opposition peaks and negative polarization surges of various asteroids and laboratory samples and a statistical algorithm is used in parameter estimation. The linear-exponential function describes well the phase curves, but dense phase angle coverage, particularly at small phase angles must be obtained to improve the results. Major emphasis should also be put on laboratory study: with an extensive library of laboratory measurements, a stronger connection between the phase curve properties and surface characteristics is possible.  相似文献   

5.
Although the opposition phenomena observed in brightness and polarization for various astronomical objects and laboratory samples have been under intense study for many years, their explanation is still far from being complete. The shadow hiding and coherent backscattering effects are mentioned most frequently in this connection. In the present work we first discuss how other coherent scattering mechanisms, in particular interference and interaction between scatterers in the near field, influence brightness and polarization of complex ensembles of particles at small phase angles. Then we demonstrate the contribution of the different mechanisms to the scattering process in a model regolith described as an ensemble of wavelength-sized clusters as constituents. While the clusters are always densely packed, the porosity of the ensemble itself, i.e., the average distances between the clusters within the ensemble, is allowed to vary. The modeling confirms that the phase dependence of intensity and polarization of light scattered by complex structures in the backscattering domain is mainly caused by the interplay of (1) the constructive interference of waves traveling through the particle ensemble along similar paths but in opposite directions and (2) the near-field effect caused by the inhomogeneity of waves in the immediate vicinity of constituent particles. The first mechanism works more effectively in sparse ensembles, while the second one manifests itself in more compact structures of wavelength-sized scatterers at distances comparable to the wavelength. It is difficult to distinguish quantitatively their contributions in models of simple structures and even more in measurements. A number of observations, especially of moderate and low albedo objects, can, however, be explained only by invoking the near-field effect.  相似文献   

6.
Nereid is a small irregular moon of Neptune that displays large-, moderate-, and small-amplitude photometric variations on both fast and slow time scales. The central mystery of Nereid is now to explain the physical mechanism of these unique brightness changes and why they change with time. To characterize Nereid's variability, we have been using the SMARTS telescopes on Cerro Tololo for synoptic monitoring from 1999 to 2006. We present a well-sampled photometric time series of 493 magnitudes on 246 nights mostly in the V-band. In combination with our earlier data (for 774 magnitudes over 362 nights), our 20-year data set is the most comprehensive for any small icy body in our Solar System. Our yearly light curves show that Nereid displays various types of behaviors: large amplitude brightenings and fadings (1987 to 1990); moderate-amplitude variation about the average phase curve (1993-1997, 2003, 2005), moderate-amplitude variation and systematically brighter by roughly one-quarter magnitude throughout the entire season (2004); and nearly constant light curves superimposed on a surprisingly large-amplitude opposition surge (1998, 1999, 2000, 2006). Other than in 2004, Nereid's variations were closely centered around a constant phase curve that is well fit with a Hapke model for the coherent backscattering opposition surge mechanism with angular scale of 0.7°±0.1°. In our entire data set from 1987-2006, we find no significant periodicity. We propose that the year-to-year changes in the variability of Nereid are caused by forced precession (caused by tidal forces from Neptune) on the spin axis of a nonspherical Nereid, such that cross-sectional areas and average albedos change as viewed from Earth.  相似文献   

7.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   

8.
Attention is drawn to the fact that not quite reliable data on the position of the polarization plane were used in study [Rosenbush, V.K. et al., Astrophys. J., 1997, vol. 487, no. 1, pp. 402–414] for the comparison of calculated and observed peaks in the polarization of the Galilean satellites of Jupiter near opposition. We propose the hypothesis that this polarization peak is formed by light interference on microcracks aligned in a required way rather than on closely-spaced particles.  相似文献   

9.
We present new polarimetric and photometric observations of the high-albedo Asteroid 64 Angelina in the UBVRI wavebands at phase angles ranging from 0.43° to 13.02° during oppositions in 1995, 1999, and 2000/2001. The polarization opposition effect has been observed in the form of a sharp peak of negative polarization with amplitude of about −0.4% centered at αmin≈1.8°, which is superimposed on the regular negative polarization branch. The amplitude of the polarization opposition effect appears to be apparition-dependent. Our photometric data confirm the early detected by Harris et al. [1989. Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus 81, 365-374] of a very strong and unusually narrow opposition spike, i.e., brightness opposition effect, for Angelina. Thus, 64 Angelina is the first asteroid for which both the polarization opposition effect and the brightness opposition effect have been detected. We observed that the polarization opposition effect as well as the regular negative polarization branch depends on the wavelength of scattered light, but in different manners. In addition, the colors B-V and V-R show little phase-angle dependence, while the color U-B increases with increasing phase angle, thus indicating that the amplitude of the brightness opposition effect is larger in the U band and almost the same in the B, V, and R bands. It appears that all colors indices begin to increase with decreasing phase angle to zero. The composite lightcurve computed with a period of 8.752 h has amplitude of 0.13 magnitude.  相似文献   

10.
Abstract— We present Markov‐Chain Monte‐Carlo methods (MCMC) for the derivation of empirical model parameters for photometric and polarimetric phase curves of asteroids. Here we model the two phase curves jointly at phase angles ≤25° using a linear‐exponential model, accounting for the opposition effect in disk‐integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V‐band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative‐polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena. Furthermore, incorporating polarimetric observations removes the indeterminacy of the opposition effect for 1 Ceres. We unveil a trend in the interrelation between the enhancement factor of the opposition effect and the angular width: the enhancement factor decreases with decreasing angular width. The minimum polarization and the polarimetric slope at the inversion angle show systematic trends when plotted against the angular width and the normalized photometric slope parameter. Our new approach allows improved analyses of possible similarities and differences among asteroidal surfaces.  相似文献   

11.
We present a systematic study of the circular polarization in pulsar integrated profiles, based on published polarization data. For core components, we find no significant correlation between the sense change of circular polarization and the sense of linear position-angle variation. Circular polarization is not restricted to core components and, in some cases, reversals of circular polarization sense are observed across the conal emission. In conal double profiles, the sense of circular polarization is found to be correlated with the sense of position-angle variation. Pulsars with a high degree of linear polarization often have one hand of circular polarization across the whole profile. For most pulsars, the sign of circular polarization is the same at 50-cm and 20-cm wavelengths, and the degree of polarization is similar, albeit with a wide scatter. However, at least two cases of frequency-dependent sign reversals are known. This diverse behaviour may require more than one mechanism to generate circular polarization.  相似文献   

12.
This review begins with a discussion of the techniques needed for observations of scattered light from cometary dust. After an introduction into the basic concepts of the scattering process, observations of the phase curves of brightness, colour and polarization are covered. Images of colour and polarization are presented and the observed relation of colour and polarization in jets and shells is discussed. The interpretation of the measurements is based on the power law size distributions of dust grains observed from space. The power index must lie between 2 and 4 to provide the mass budget and visibility of the dust coma in accordance with the basic facts of cometary physics. Application of mechanical (radiation pressure) theory to cometary images allows us to derive related power law distributions for comets not explored by spacecraft. Grain scattering models are presented and compared with observations. A prediction is made of the spatial distribution of Stokes parameters U and V in the presence of aligned particles. Up to now such patterns have not been observed. Future work should include the exploration of comets at small and possibly very small phase angles and a detailed comparison of polarization and colour images of comets with thermal images and with models based on mechanical theory. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The recently detected linear polarization in the optical light curve of GRB 990510 renewed interest in how polarization can be produced in gamma-ray burst fireballs. Here we present a model based on the assumption that we are seeing a collimated fireball, observed slightly off-axis. This introduces some degree of anisotropy, and makes it possible to observe a linearly polarized flux even if the magnetic field is completely tangled in the plane orthogonal to the line of sight. We construct the light curve of the polarization flux, showing that it is always characterized by two maxima, with the polarization position angle changing by 90° between the first and the second maximum. The very same geometry as assumed here implies that the total flux initially decays in time as a power law, but gradually steepens as the bulk Lorentz factor of the fireball decreases.  相似文献   

14.
We report results of polarimetric imaging observations of Mars with the Hubble Space Telescope during the 2003 opposition. Through careful calibration, the observations with the ACS camera allow measurements of the polarization degree with an absolute accuracy better than 0.5% and detection of features with polarization degree contrast as small as 0.2%. The general distribution of linear polarization parameters over the Mars disk and their dependence on phase angle and wavelength are well explained qualitatively by a combination of scattering separately by the martian surface and atmosphere. We have discovered transient polarization phenomena interpreted as clouds that are best observed in ultraviolet light. These clouds are optically thin but strongly polarizing, and their origin may be related to atmospheric ice condensation processes.  相似文献   

15.
Brightness and linear polarization measurements at 678.5 nm for four south-north strips of Jupiter are studied. These measurements were obtained in 1997 by the Galileo photopolarimeter/radiometer. The observed brightness exhibits latitudinal variations consistent with the belt/zone structure of Jupiter. The observed degree of linear polarization is small at low latitudes and increases steeply toward higher latitudes. No clear correlations were observed between the degree of linear polarization and the brightness. The observed direction of polarization changes from approximately parallel to the local scattering plane at low latitudes to perpendicular at higher latitudes. For our studies, we used atmospheric models that include a haze layer above a cloud layer. Parameterized scattering matrices were employed for the haze and cloud particles. On a pixel-wise basis, the haze optical thickness and the single-scattering albedo of the cloud particles were derived from the observed brightness and degree of linear polarization; results were accepted only if they were compatible with the observed direction of polarization. Using atmospheric parameter values obtained from Pioneer 10 and 11 photopolarimetry for the South Tropical Zone and the north component of the South Equatorial Belt, this analysis yielded acceptable results for very few pixels, particularly at small phase angles. However, for almost all pixels, acceptable results were found when the parameterized scattering matrix of the cloud particles was adjusted to produce more negative polarization for single scattering of unpolarized light, especially at large scattering angles, similar to some laboratory measurements of ammonia ice crystals. Using this adjusted model, it was found that the derived latitudinal variation of the single-scattering albedo of the cloud particles is consistent with the belt/zone structure, and that the haze optical thickness steeply increases toward higher latitudes.  相似文献   

16.
We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3 and 15GHz) with the VLA and the Effelsberg 100 m-telescope and in December 1988 at two frequencies (2.7 and 5.0 GHz) with the latter. It is shown that the relationship between the variations of the polarized and total flux density is highly wavelength dependent, and the multi-frequency polarization behavior may be essential for investigating the mechanisms causing these variations. It is shown that the variations observed at 20 cm can be interpreted in terms of refractive interstellar scintillation. However, after subtracting the variation due to scintillation, three 'features' emerged in the light-curve of the polarized flux density, indicating an additional variable component. Interestingly, these features are shown to be correlated with the variations at 2-6 cm, thus indicating that thes  相似文献   

17.
Nature of the photometric phase curves of the regolith like surfaces (like those of the asteroids) are believed to be dependent on the single particle characteristics like particle size, shape, composition etc. and physical characteristics of the surface like porosity and roughness. Most of the phase curves have a rapid surge of intensity at small phase angles (typically below 5°) known as opposition effect, followed by a linear less decreasing trend at larger phase angles. Average intensity of the linear region has been found to be mostly dependent on the average particle size and its composition, in many laboratory observations. Generally, it is difficult to explain the nature of light scattering by an ensemble of irregular shaped inhomogeneous particles with a theoretical model, just by studying the phase curves. In the present work, we have investigated whether the theoretically expected variation of the scattered light intensity (at a given phase angle) with the average particle size of the grains constituting regoliths, for a given material of the particle is in agreement with the experimental results or not? If yes, this can be a simpler but efficient way to study light scattering by regolith like surfaces. For theoretical analysis, Hapke formula has been used with Mie theory for single particle phase function, where we have neglected the influence of porosity and roughness presently. The data are also fitted with an empirical formula. It has been found that this empirical formula may also be used to estimate the unknown average particle size of a real regolith with known composition.  相似文献   

18.
以类星体0917+624中1989年5月观测到的IDV事件为实例,尝试提出一个4成分模型(1个稳定成分和 3个闪烁成分)以充分解释在 6 cm波长上观测到的偏振变化,包括流量和偏振流量的相关性和反相关性以及它们之间的快速转化.对于 20 cm波长上观测到的偏振变化,3成分模型(1个稳定成分和3个闪烁成分)已足以解释全部现象.文中提出的闪烁模型在解释IDV事件的偏振变化方面改进了以前的模型拟合.  相似文献   

19.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

20.
This paper presents a semi-empirical model for variations of interstellar polarization curves based upon the Serkowski-Wilking law for optical and near-infrared wavebands. The model assumes that nonspherical dust grains producing interstellar polarization are core-mantle particles shaped like oblate spheroids. The physical picture is one in which large (a 0 0.1µm) particles in the dense cloud phase are deposited into the diffuse cloud medium and thereafter undergo mantle processing by galactic shocks and UV starlight. It is shown that polarization curves vary their widths mainly as a consequence of the nonthermal sputtering of mantles by low-velocity shocks. Mantle sputtering by shocks in low density clouds tends to broaden the curves, whereas mantle sputtering by shocks in denser clouds produce narrow curves. Hence, shock processing of grain mantles can explain the observed correlation between the width of polarization curves and the dust grain environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号