首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 937 毫秒
1.
为深入研究安装螺旋导板的深水立管涡激振动规律,设计一种月牙凸起型螺旋导板抑振装置,月牙凸起采用橡胶材料,在凸起两端肋高最低处连接成螺旋状。通过变化螺旋导板的螺旋数、螺距及螺高等形状参数,在风-浪-流联合水槽中进行安装该抑振装置的立管涡激振动试验,研究该抑振装置对涡激振动的抑制效率及其对立管动力响应的影响规律。研究结果表明,凸起型螺旋导板可取得优异的抑制效率,有效地降低由漩涡脱落引起的横向振动幅值;随着螺旋数的增加,螺旋导板抑制效率有所提高,但增幅降低,增加螺距对抑制效率影响不大,而随着螺高的增加,抑制效率有较大增幅;同时该抑振装置能有效地扰乱立管振动的主导频率,各抑振立管模型在示波区间内基本没有出现明显的主导频率。  相似文献   

2.
将月牙扰流器按"八"字布置于立管表面用以抑制立管涡激振动,为研究其抑振效果,分析其抑振敏感性,在大型波、浪、流水槽进行涡激振动抑振试验。试验中采用有机玻璃管模拟立管,立管模型长1.5m,外径18mm,壁厚2mm,两端铰接,外流速分别为0.6、0.7m/s。按照不同螺高、螺距及迎水面形式设计8根具有正八字、倒八字抑振装置的不同类型抑振管,同时设计一根与抑振管相同配重的裸管,在立管表面粘贴应变计以测得动态应变数据,经过数据处理得到立管振动位移值。通过各抑振管间以及抑振管与配重裸管之间横向振动位移幅值的对比,研究抑振装置的抑振敏感性。结果表明:在适当尺寸及布置形式条件下,表面按"八"字布置月牙扰流器能够有效抑制立管横向涡激振动;迎水面月牙布置形式不同,抑振效果略显不同,迎水面布置为倒八字其抑振效果优于正八字,但该种抑振装置仍可实现全向性;抑振装置的螺高、螺距对抑振效果有一定影响,螺高增大、螺距减小有利于提高抑振效果。  相似文献   

3.
海洋立管的涡激振动会对立管结构的疲劳寿命产生严重的影响。提出1种月牙肋抑振装置,通过在室内水槽中进行物理模型试验,研究该装置在涡激振动情况下对立管的抑振作用。测得该装置在立管表面不同布置方式时顺流向及横流向振动的应变时程曲线,使用DASP软件对所测数据进行分析处理,得到立管的振动幅值和功率谱。试验结果表明:这种月牙肋抑振装置可明显降低立管模型的振动幅值,且对振动频率有一定的影响,同时也表明不同的布置方式对立管的抑振效果也不相同。  相似文献   

4.
海洋立管抑振装置优化布置的实验研究   总被引:1,自引:0,他引:1  
设计1种梯形截面的三螺旋导板抑振装置,在实验室大型水槽进行海洋立管涡激振动实验.通过改变这种抑振装置的覆盖方式和覆盖范围,研究梯形截面螺旋导板的不同覆盖方式和覆盖范围对抑制海洋立管涡激振动的作用.实验时用动态电阻应变仪采集立管模型横向和顺流向的动态响应数据,并利用雨流计数法对模型进行疲劳分析.实验结果表明:在外流流速相同的条件下,三螺旋导板各种覆盖方案对涡激振动都有抑制作用;随着螺旋导板覆盖率的增加,立管的振动减弱,疲劳寿命增加;覆盖螺旋导板的立管顺流向振动频率明显降低,横向振动频率当覆盖率较高时有所降低,覆盖率较低时基本没有变化.  相似文献   

5.
本文设计一种新型涡轮扰流抑振装置,并在风-浪-流联合水槽中通过试验研究了该抑振装置对海洋立管涡激振动的抑制效果。在试验中,针对该新型抑振装置,提出了4种不同结构设计参数,研究了在不同外流速下各种参数工况的抑制效果及振动规律。试验结果表明:涡轮扰流抑振装置不受来流方向的限制,有较强的适用性;同时,该抑振装置能明显降低立管由漩涡脱落引起的横向振动幅值,且流速越高,抑制效果越明显,最大抑制效果可达80.2%;另外,试验结果还表明该抑振装置对立管振动的主频率影响不大。  相似文献   

6.
三根附属控制杆对海洋立管涡激振动抑制作用实验研究   总被引:2,自引:0,他引:2  
海洋立管的涡激振动会严重影响立管结构的使用寿命.通过室内水槽实验研究在立管模型周围等分布置三根附属控制杆来减小立管涡激振动响应的新型抑制措施.实验中观测了0.24 m/s、0.31 m/s、0.37 m/s以及0.44 m/s四种均匀流和两个极限来流方向下的涡激振动抑制效果.实验结果表明:三根附属控制杆抑制措施可明显降低立管模型的横向振动幅值,但对主管的振动频率改变不大;同时,这一抑制措施对来流方向有较强的适应性,避免了以往单根控制杆在流向发生改变时可能加剧立管涡激振动的弊端.  相似文献   

7.
螺旋列板——深水立管涡激振动抑制装置   总被引:4,自引:0,他引:4  
立管是海洋油气开采中必不可少的组成部分,它承担着流体输送和钻探的重要功能。深水立管在来流作用下容易产生涡激振动,涡激振动是造成立管疲劳破坏的主要原因之一,它会加速立管的疲劳破坏,因此需要采取适当的措施抑制深水立管涡激振动。海洋工程中涡激振动的削弱方法多是在立管外侧添加抑制装置,螺旋列板作为一种广泛应用的深水立管涡激振动抑制装置,在墨西哥湾、北海、西非等深水项目中有多年的应用。文中介绍了螺旋列板的设计、加工制作及安装方法,着重阐述了列板形状尺寸、海洋生物、包覆比例等对其抑制效率的影响,最后对螺旋列板的未来发展方向进行了展望。  相似文献   

8.
基于MATLAB开发海洋立管涡激振动数值模拟系统NSVIV 1.0,系统采用尾流振子模型模拟外流对立管结构的作用,考虑内流对立管结构的影响,对立管的涡激振动动力响应和疲劳寿命进行预测分析。系统界面简洁清晰,使用方便,适用于顶张力立管,为进一步集成功能齐全的海洋立管设计分析软件打下基础。  相似文献   

9.
质量比对柔性立管涡激振动影响实验研究   总被引:1,自引:0,他引:1  
质量比是影响海洋立管涡激振动的一个重要因素.通过在室内物理实验中使立管模型内部分别充填空气、水和沙来改变立管的质量比,从而研究质量比对柔性细长立管涡激振动的影响.实验结果表明:在相同流速下,质量比大的立管模型所激起的模态更高.在低约化速度区域,空管和水管的涡激振动响应频率与涡脱落频率相同,沙管的响应频率则与自振频率更接近,三种质量比立管的响应位移较接近;在高约化速度区域,三种质量比的立管模型的响应频率处于自振频率和涡脱落频率之间,但空管的响应频率随约化速度的增大而不断增大,同一流速下,质量比大的立管模型响应位移小,其中空管的涡激振动响应一直处于大振幅的锁定状态下.共振区域对应约化速度的范围随着质量比增大而减小.  相似文献   

10.
考虑内流作用利用功能原理建立顶张力立管涡激振动响应数值模型,采用尾流振子模型模拟涡激振动升力,利用Hermit插值函数将其离散得到立管振动响应的矩阵方程形式,运用Newmark-β法在时域内迭代求解其动力响应。在山东省海洋工程重点实验室进行了阶段流作用下的大长细比海洋立管涡激振动试验,对比数值模拟和试验结果表明该模型对于考虑内流作用的大长细比海洋立管涡激振动响应预报是有效的,为深水立管涡激振动研究提供一定的借鉴。  相似文献   

11.
The effects of different helical strake coverage on the vortex-induced vibration (VIV) of a model flexible riser were studied experimentally, with the aim of further improving the understanding of VIV responses. Uniform and linearly sheared currents were simulated to study response parameters such as non-dimensional displacement, fatigue damage, suppression efficiency, and the comprehensive evaluation is further studied. Test results of the bare model for a uniform current showed that the behavior of both the standing wave and traveling wave dominated VIV displacement. However, for a linearly sheared current, traveling wave behavior dominated VIV displacement in the high-velocity range. The results of the straked model tests indicated that the response was strongly dependent upon the amount of coverage of helical strakes. The flexible riser with 75% strake coverage gave the best comprehensive evaluation in a uniform current, and 50% strake coverage gave the best comprehensive evaluation in a linearly sheared current.  相似文献   

12.
An experimental investigation was conducted on a flexible riser with and without various strake arrangements. The aim of the present work was to further improve the understanding of the response performance of the vortex-induced vibration (VIV) of a riser with helical strakes. Two current profiles, including uniform and linearly sheared flows, were simulated. The uniform current was simulated by towing the riser model in one direction using the towing carriage, and the linearly sheared current was simulated by fixing one end of the riser and using a driven cantilever to traverse a circular arc. Based on the modal superposition method, the displacement responses were obtained from the measured strain. Strakes with different heights and pitches were analysed, and response parameters such as the displacement response and fatigue damage were studied. The results of the bare model test show that the lock-in phenomenon displays multi-order characteristics, and the VIV displacement decreases with an increased order of the lock-in regime. The results of the straked model test indicate that the response characteristics of a bare riser can be quite distinct from those of a riser with helical strakes, and the response performance depends closely on the geometry of the strake configuration.  相似文献   

13.
Control rod is one of the common passive control methods to suppress the vortex-induced vibration (VIV) of cylindrical structures. In this paper, the experimental study is conducted to detailed understand the performance of multiple control rods in suppressing the cross-flow (CF) VIV for a long flexible cylinder. The influence of the spatial arrangement of 3 and 4 control rods on CF VIV response of the main cylinder is investigated in a towing tank. It is observed that the attack angle θ is a very significant parameter to affect the vibration response, dominant frequency and the VIV suppression efficiency of the main cylinder. Based on the suppression efficiencies analysis of VIV response in the present experimental investigation, the spatial arrangement of 3 control rods with θ = 40° and 4 control rods with θ = 30° is the best choice for suppressing the CF VIV response of the main flexible cylinder. Overall, the use of 4 control rods could reduce VIV more effectively than the application of 3 control rods.  相似文献   

14.
高云  付世晓  曹静  陈一帆 《海洋工程》2015,29(5):673-690
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration (VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line (IL) response is as important as the cross-flow (CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

15.
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line(IL) response is as important as the cross-flow(CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

16.
海洋立管是深海油气开发中用于连接海底井口和水面浮体的唯一通道。立管在洋流作用下极易发生涡激振动(vortex-induced vibration,简称VIV),发展快速经验性涡激振动时域预报方法对立管的安全设计具有重要意义。通过柔性立管模型试验,结合载荷重构方法和最小二乘法,识别建立了能量竞争载荷模型下的经验水动力载荷系数模型。应用识别建立的经验水动力载荷系数模型,发展形成了海洋立管顺流向及横流向双向涡激振动时域预报方法。将预报结果与试验结果对比,结果表明:基于能量竞争载荷模型的海洋立管双向涡激振动预报方法能够有效预报海洋立管涡激振动主导模态、主导频率、流向平均位移响应和涡激振动位移响应等力学行为特性。研究成果对发展更为有效的涡激振动预报手段具有有益参考。  相似文献   

17.
Laboratory tests have been conducted on vortex-induced vibration (VIV) of a long flexible riser towed horizontally in a wave basin. The riser model has an external diameter of 16 mm and a total length of 28.0 m giving an aspect ratio of about 1750. Reynolds numbers ranged from about 3000 to 10,000. Fiber optic grating strain gages are adopted to measure the dynamic response in both cross-flow and in-line directions. The cross-flow vibrations were observed to vibrate at modes up to 6 and the in-line reached up to 12. The fundamental response frequencies can be predicted by a Strouhal number of about 0.18. Multi-mode responses and the asymmetry of the bare pipe response in uniform flow were observed and analyzed. The experimental results confirmed that the riser pipe vibrated multi-modally despite it being subject to a uniform current profile and all of the excited modes vibrated at the Strouhal frequency. The asymmetrical distribution of displacement mainly resulted from the modal composition. Higher harmonics of the VIV response such as the third, fourth and fifth harmonics frequencies were found to be steady over the entire duration of the test even if they varied along the length of the riser pipe.  相似文献   

18.
This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration (VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34E5 to 2.35E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow (CF) and inline (IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under “lock-in” condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference.  相似文献   

19.
Experimental studies were carried out to investigate the response features of an inclined flexible bare cylinder as well as a straked cylinder in a towing tank, with the main purpose of further improving the understanding of the effect of yaw angle on vortex-induced vibration (VIV) suppression. Four yaw angles (a = 0°, 15°, 30°, 45°), which is defined as the angle between the cylinder axis and the plane orthogonal to the oncoming fluid flow, were tested. The cylinder model was towed along the tank to generate a uniform fluid flow. The towing velocity was in the range of 0.05–1.0 m/s with an interval of 0.05 m/s. The corresponding Reynolds number ranged from 800 to 16000. The strakes selected for the experiments had a pitch of 17.5D and a height of 0.25D, which is generally considered as the most effective configuration for VIV suppression of a flexible cylinder in water. The experimental results indicate that VIV suppression effectiveness of the inclined flexible straked cylinder is closely related to the yaw angle. The displacement amplitudes are significantly suppressed in both cross-flow (CF) and in-line (IL) directions at a = 0°. However, with increasing yaw angle, the suppression efficiencies of the CF and IL displacement amplitudes gradually decrease. In addition, the CF dominant frequencies of the straked cylinder obviously deviate from those of the bare cylinder at a = 0° and 15°. This deviation is substantially alleviated with increasing yaw angle. The IL dominant frequencies show less dependency on the yaw angle. Similar trends are also observed on the dominant modes of vibration and the mean drag coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号