首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Planetary Fourier Spectrometer (PFS) experiment on board the Mars Express mission has two channels covering the 1.2-5.5 μm short wavelength channel (SWC) and the 5.5-45 μm (LWC). The SWC measures part of the thermal emission spectrum and the solar reflected spectrum of Mars between 1700 and 8200 cm−1 with a spectral resolution of 1.3 cm−1, in absence of apodisation. We present here the calibration of this channel and its performance. The instrument calibration has been performed on ground, before launch, in space during near earth verification (NEV) measurements, and at Mars. Special attention has been given to the problem of microvibrations on board the spacecraft.In order to obtain correct results, the source-instrument-detector interaction for the thermal part is studied very accurately. The instrument shows a nonlinear behaviour with source intensity. The SNR increases with amplification, hence high gain factors are usually used. The detector is, in space, cooled by a passive radiator, and works around 210-215 K. The calibration source (an internal lamp) shows variations during a pericentre pass and therefore impose a complex procedure for the SW channel calibration. Mechanical microvibrations strongly affect part of the spectrum. We discuss the validity of the present calibration, and indicate possible future developments. Samples of the calibrated data are given to show the performance of the experiment and its scientific potentialities.  相似文献   

2.
The Planetary Fourier Spectrometer (PFS) experiment on board the Mars Express mission has two channels covering the 1.2-5 μm (SWC) and the 5-50 μm (LWC). The Long Wavelength Channel (LWC) measures the thermal emission spectrum of Mars between 200 and 2000 cm−1 with a spectral resolution of 1.4 cm−1, in absence of apodisation. We present here the calibration of this channel and its performance. The instrument calibration has been performed on ground, before launch, in space during Near Earth Verification (NEV) measurements, and at Mars. Special attention has been given to the problem of microvibrations on board the spacecraft.In order to obtain correct results, the source-instrument-detector interaction is studied very accurately. The instrument variations during a pericentre pass impose a complex procedure for the LW channel calibration, but fortunately the procedure adopted seems to work well. Samples of the calibrated data are given (as single spectrum and as an average over a few spectra) to show the performance of the experiment and its scientific potentialities.  相似文献   

3.
We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light, image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.  相似文献   

4.
5.
Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.  相似文献   

6.
R. Misawa  J-Ph. Bernard  Y. Longval  I. Ristorcelli  P. Ade  D. Alina  Y. André  J. Aumont  L. Bautista  P. de Bernardis  O. Boulade  F. Bousqet  M. Bouzit  V. Buttice  A. Caillat  M. Chaigneau  M. Charra  B. Crane  F. Douchin  E. Doumayrou  J. P. Dubois  C. Engel  M. Griffin  G. Foenard  S. Grabarnik  P. Hargrave  A. Hughes  R. Laureijs  B. Leriche  S. Maestre  B. Maffei  C. Marty  W. Marty  S. Masi  J. Montel  L. Montier  B. Mot  J. Narbonne  F. Pajot  E. Pérot  J. Pimentao  G. Pisano  N. Ponthieu  L. Rodriguez  G. Roudil  M. Salatino  G. Savini  O. Simonella  M. Saccoccio  J. Tauber  C. Tucker 《Experimental Astronomy》2017,43(3):211-235
The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne astronomy experiment designed to study the linear polarization of thermal dust emission in two photometric bands centred at wavelengths 240 μm (1.2 THz) and 550 μm (545 GHz), with an angular resolution of a few arcminutes. Several end-to-end tests of the instrument were performed on the ground between 2012 and 2014, in order to prepare for the first scientific flight of the experiment that took place in September 2015 from Timmins, Ontario, Canada. This paper presents the results of those tests, focussing on an evaluation of the instrument’s optical performance. We quantify image quality across the extent of the focal plane, and describe the tests that we conducted to determine the focal plane geometry, the optimal focus position, and sources of internal straylight. We present estimates of the detector response, obtained using an internal calibration source, and estimates of the background intensity and background polarization.  相似文献   

7.
Hyperspectral imagery is an essential technique for remote sensing of surfaces and atmospheres of planetary objects. However, given the instrumental complexity of coupling imaging and spectroscopy, in particular in the infrared, an in-depth ground calibration is mandatory to enable an unbiased and optimized data reduction.This paper presents the ground calibration setup designed and implemented for the visible and near infrared imaging spectrometers VIRTIS/ROSETTA, and OMEGA/MARS-EXPRESS, and summarizes the main results obtained in validating the required performances.  相似文献   

8.
9.
Interferometric calibration always yields non unique solutions. It is therefore essential to remove these ambiguities before the solutions could be used in any further modeling of the sky, the instrument or propagation effects such as the ionosphere. We present a method for LOFAR calibration which does not yield a unitary ambiguity, especially under ionospheric distortions. We also present exact ambiguities we get in our solutions, in closed form. Casting this as an optimization problem, we also present conditions for this approach to work. The proposed method enables us to use the solutions obtained via calibration for further modeling of instrumental and propagation effects. We provide extensive simulation results on the performance of our method. Moreover, we also give cases where due to degeneracy, this method fails to perform as expected and in such cases, we suggest exploiting diversity in time, space and frequency.  相似文献   

10.
As a continuation to the published work on model based calibration technique with HESP(Hanle Echelle Spectrograph) as a case study, in this paper we present the performance results of the technique. We also describe how the open parameters were chosen in the model for optimization, the glass data accuracy and handling the discrepancies. It is observed through simulations that the discrepancies in glass data can be identified but not quantifiable. So having an accurate glass data is important which is possible to obtain from the glass manufacturers. The model’s performance in various aspects is presented using the ThAr calibration frames from HESP during its pre-shipment tests. Accuracy of model predictions and its wave length calibration comparison with conventional empirical fitting, the behaviour of open parameters in optimization, model’s ability to track instrumental drifts in the spectrum and the double fibres performance were discussed. It is observed that the optimized model is able to predict to a high accuracy the drifts in the spectrum from environmental fluctuations. It is also observed that the pattern in the spectral drifts across the 2D spectrum which vary from image to image is predictable with the optimized model. We will also discuss the possible science cases where the model can contribute.  相似文献   

11.
Knowledge of the Solar Diameter Imager and Surface Mapper (SODISM) plate scale is a fundamental parameter for obtaining the solar radius. We have determined the plate scale of the telescope on the ground and in flight onboard the Picard spacecraft. The results show significant differences; the main reason is that the conditions of observation are not the same. In addition, the space environment has an impact on the performance of a metrology instrument. Therefore, calibration in space and under the same conditions of observation is crucial. The transit of Venus allowed us to determine the plate scale of the SODISM telescope and hence the absolute value of the solar radius. The transit was observed from space by the Picard spacecraft on 5?–?6 June 2012. We exploited the data recorded by SODISM to determine the plate scale of the instrument, which depends on the characteristics of optical elements (mirrors, filters, or front window). The mean plate scale at 607.1 nm is found to be 1.0643 arcseconds?pixel?1 with 3×10?4 RMS. The solar radius at 607.1 nm from 1 AU is found to be equal to 959.86 arcseconds.  相似文献   

12.
We describe the TRAnsportable Flbre COupled échelle Spectrograph (TRAFICOS) equipped with a Zeeman analyzer and manufactured mainly for the observation of stellar magnetic fields. The spectrograph, designed at the Astrophysikalisches Institut Potsdam and constructed at the Thüringer Landessternwarte Tautenburg, is laid out in a quasi-Littrow configuration. The part attached to the Nasmyth focus of the 2 m telescope contains the telescope adapter for the fibre input and output of the star and calibration light, the cases for the flatfield and the wavelength calibration, and the Zeeman analyzer. The optical scheme and the reduction software are mentioned in some details and the first results of the determination of the magnetic field and radial velocity of several stars are given showing the performance of the device in comparison with existing data.  相似文献   

13.
伽马暴偏振探测仪(POLAR)是天宫2号实验室上搭载的一个γ射线偏振仪,于2016年9月15日搭载在天宫2号进入低轨运行,主要用于探测在50-500 keV能区的硬X射线辐射的线偏振.POLAR由25个模块组成,每个模块有64个塑料闪烁体棒,总计有1600个塑料闪烁体棒,具有较大的有效探测面积和视场.在轨运行期间探测到多个小耀斑,它们的硬X射线光子能量通常小于50 keV,无法直接使用在轨和地面的高能定标结果来进行能谱分析.结合拉马第太阳高能光谱成像探测器(RHESSI)对耀斑SOL2016112907能谱的观测和蒙特卡洛模拟,对耀斑期间被激活的闪烁体棒进行能量低于50 keV的低能相对定标.虽然定标得到的能量阈值(~10 keV)和转换因子相对稳定,但是和高能定标给出的结果相比有显著差异,并且不同闪烁体棒显示出的差异没有明显的规律性.  相似文献   

14.
We describe in-flight calibration of the Cassini Imaging Science Sub-system narrow- and wide-angle cameras using data from 2004 to 2009. We report on the photometric performance of the cameras including the use of polarization filters, point spread functions over a dynamic range greater than 107, gain and loss of hot pixels, changes in flat fields, and an analysis of charge transfer efficiency. Hot pixel behavior is more complicated than can be understood by a process of activation by cosmic ray damage and deactivation by annealing. Point spread function (PSF) analysis revealed a ghost feature associated with the narrow-angle camera Green filter. More generally, the observed PSFs do not fall off with distance as rapidly as expected if diffraction were the primary contributor. Stray light produces significant signal far from the center of the PSF. Our photometric analysis made use of calibrated spectra from eighteen stars and the spectral shape of the satellite Enceladus. The analysis revealed a shutter offset that differed from pre-launch calibration. It affects the shortest exposures. Star photometry results are reproducible to a few percent in most filters. No degradation in charge transfer efficiency has been detected although uncertainties are large. The results of this work have been digitally archived and incorporated into our calibration software CISSCAL available online.  相似文献   

15.
The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of 9% at 7 keV.The instrument parameters and the performance, using data from the flight and ground calibration, are discussed.  相似文献   

16.
Albregtsen  F.  Maltby  P. 《Solar physics》1981,74(1):147-151
We draw attention to the possibility of distinguishing between different sunspot theories by observing: (i) The umbra/photosphere intensity ratio as a function of spot size and (ii) the morphology and time evolution of sunspot inhomogeneities such as umbral dots. In arguing the need for space observations of sunspot intensities we discuss the corrections for stray light for ground based and space observations.The opportunity to use the November 13, 1986 Mercury transit as an in situ calibration event is pointed out.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

17.
A novel method is presented for the wavelength calibration of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). The proposed method combines the arc lines and night sky lines, and can achieve high performance. Firstly, the initial wavelength calibration is performed by employing arc lines. Afterwards, the centroids of sky lines are calculated by the initial calibration results and adjusted by the gravity method iteratively. Finally, the ultimate wavelength calibration is obtained by fitting the centroids of arc lines and sky lines with their corresponding wavelengths. Experiments are performed on the data observed by LAMOST, and the results of the proposed method are more accurate than that of the calibration only by arc lines or sky lines. The calibration sky lines are dense in the red channel (5,700–9,000 Å) of LAMOST, but only a few ones are in the blue channel (3,700–5,900 Å). The new method achieves excellent results in the red channel as the substantial sky lines are employed, and the calibration accuracy of the blue channel is also enhanced in some degree by the scare sky lines.  相似文献   

18.
Gburek  S.  Sylwester  J. 《Solar physics》2002,206(2):273-284
We show the result of a search for compact sources in observations of Soft X-ray Telescope (SXT) aboard the Yohkoh satellite. We focused the search on the highest-resolution SXT images taken with the SXT thick aluminum filter. Non-standard methods have been used in order to avoid data corrupted by spikes or dark current saturation effects. Search criteria and certain questions concerning the SXT database are addressed and discussed in more detail. For the most compact structures found we show also comparison of their brightness spatial distribution with ground calibration data. The search was performed to identify regions with well-localized X-ray emission in SXT images and to gather basic information about them.  相似文献   

19.
20.
Lucy F. Lim  Larry R. Nittler 《Icarus》2009,200(1):129-146
We present a new calibration of the elemental-abundance data for Asteroid 433 Eros taken by the X-ray spectrometer (XRS) aboard the NEAR-Shoemaker spacecraft. (NEAR is an acronym for “Near-Earth Asteroid Rendezvous.”) Quantification of the asteroid surface elemental abundance ratios depends critically on accurate knowledge of the incident solar X-ray spectrum, which was monitored simultaneously with asteroid observations. Previously published results suffered from incompletely characterized systematic uncertainties due to an imperfect ground calibration of the NEAR gas solar monitor. The solar monitor response function and associated uncertainties have now been characterized by cross-calibration of a large sample of NEAR solar monitor flight data against contemporary broadband solar X-ray data from the Earth-orbiting GOES-8 (Geostationary Operational Environmental Satellite). The results have been used to analyze XRS spectra acquired from Eros during eight major solar flares (including three that have not previously been reported). The end product of this analysis is a revised set of Eros surface elemental abundance ratios with new error estimates that more accurately reflect the remaining uncertainties in the solar flare spectra: Mg/Si=0.753+0.078/−0.055, Al/Si=0.069±0.055, S/Si=0.005±0.008, Ca/Si=0.060+0.023/−0.024, and Fe/Si=1.678+0.338/−0.320. These revised abundance ratios are consistent within cited uncertainties with the results of Nittler et al. [Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695] and thus support the prior conclusions that 433 Eros has a major-element composition similar to ordinary chondrites with the exception of a strong depletion in sulfur, most likely caused by space weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号