首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
为了探究与融雪、融冻过程相联系的青藏高原春季地表非绝热加热异常对东亚夏季风强度变化的影响,利用NCEP/NCAR Reanalysis I(NCEP-I)和欧洲中心(ERA-interim)全球月平均感、潜热通量等再分析资料,以及1961—2014年全国723个气象站逐月历史观测资料,首先定义一个与青藏高原地表非绝热加热相联系的新东亚夏季风指数,并分析新夏季风指数与中国夏季降水的关系,进而探讨青藏高原春季地表非绝热加热异常对东亚夏季风强度变化的影响。结果表明:(1)受青藏高原春季大气射出长波辐射减弱、地气温差发生突变影响,近36 a青藏高原春季地表感热、潜热通量先后在1997年、2003年左右经历了一次由增大转为减小的明显突变;(2)采用200 h Pa水平风速新定义的东亚夏季风指数具有良好、广泛的代表性和适用性,近50 a来新东亚夏季风指数强度呈减弱趋势,减弱速率为-0.73/10 a;(3)新东亚夏季风指数与长江流域夏季6—8月降水之间存在极为显著的负相关关系,即东亚夏季风出现增强(减弱)异常时,长江流域夏季6—8月降水会异常减少(增多);(4)融雪、融冻过程引起的青藏高原春季前期地表潜热通量正(负)异常,会引起随后建立的东亚夏季风强度的减弱(增强)。与融雪、融冻过程联系紧密的青藏高原春季地表感、潜热通量存在显著的准3 a左右周期,其年代际变化对随后爆发的东亚夏季风和我国东部地区夏季降水准3 a左右周期的变化具有重要影响。  相似文献   

2.
ENSO 循环各阶段东亚夏季风特征的诊断研究   总被引:2,自引:6,他引:2  
陈月娟  简俊  周任君 《高原气象》2002,21(5):441-446
利用NCEP/NCAR再分析资料和NCAR海温资料及中国测站地温资料,对ENSO循环不同阶段东亚夏季风强弱变化进行了分析.并从此期间的海陆热力差异和季风低压变化来探讨海温异常对东亚夏季风的影响,结果表明:东亚夏季风指数有明显的年际变化和年代际变化,且与赤道东太平洋SST有较好的负相关关系,其中又以与三个月前的海温变化关系最好.在Ninol 2区为冷、暖水之后的三个月中,冷水期对应的东亚夏季风指数大于暖水期对应的东亚夏季风指数,东亚夏季风比暖水期强。赤道东太平洋SST变化期间亚洲大陆的地面温度和地面气压也有明显变化,这是引起ENSO不同阶段东亚夏季风变化的主要原因。  相似文献   

3.
武炳义  张人禾 《气象学报》2011,69(2):219-233
利用欧洲中心35年(1968-2002年)月平均再分析资料(ERA-40),通过矢量经验正交分析方法,研究了东亚夏季风年际变率的第2、3优势模态及其与中、高纬度大气环流和外强迫异常之间的联系.这两个优势模态均与北半球中、高纬度大气环流异常有密切的关系,累计解释协方差超过了东亚夏季风的第1模态.东亚夏季风变率的第2模态解...  相似文献   

4.
亚洲季风区地面感热通量的区域变化特征   总被引:1,自引:0,他引:1  
采用1979-1995年(缺1986、1987、1993)NCEP/NCAR再分析资料中的逐旬感热通量资料,对亚洲季风区地面感热通量的空间结构及时间演变进行了旋转经验正交函数(REOF)分析。结果表明:印度半岛和中南半岛地区感势通量的变化与亚洲季风的爆发及演变有密切关系,是季风爆发的主要关键区。这两个地区的感热积累是东亚季风爆发的触发因素之一,尤其是印度半岛北部感热通量的突变对印度夏季风演变十分重要。印度半岛北部与青藏高原西部的热力差异在季风的爆发和维持中占有重要地位。而东北亚与西北太平洋的热力差异只对东亚夏季风的演变有影响,与冬季风则无直接关联。在东亚季风的爆发中居主导地位的还是印度半岛北部和青藏高原西北部的感热加热作用。  相似文献   

5.
定义了东亚冬、夏季风强度指数,计算了1873~1989年夏季、冬季及其逐月的东亚季风强度指数,研究了冬、夏季风强度指数的长期气候变化。结果表明,100多年来,东亚夏季风明显加强,冬季风变化不大,稍有减弱。突变分析结果表明,1918年前后,东亚夏季风突变增强,与北半球夏季地面气温突变增暖是同步发生的。但是,冬季风不太明显的突变发生于1958年。此外,用滑动相关系数分析了东亚冬夏季风与北半球地面气温的关系,指出它们之间的相关关系有年代际变化。  相似文献   

6.
20CR再分析资料在东亚夏季风区的质量评估   总被引:2,自引:1,他引:1  
宋丰飞  周天军 《大气科学》2012,36(6):1207-1222
本文利用NCEP1和ERA40再分析资料, 并结合观测资料, 对最新公布的一套再分析资料——20CR再分析资料在东亚夏季风区的质量进行了综合评估。本文主要是从气候态、年际变率、年代际变化三个方面, 来评估20CR再分析资料在东亚夏季风区的质量。结果表明, 在气候平均态上, 20CR再分析资料基本合理再现了东亚夏季风区的高低层环流场(包括南亚高压、副热带西风急流、近地层风场)以及经向环流圈特征。但相较于NCEP1和ERA40, 20CR所刻画的南亚高压偏强, 西风急流偏北, 对流层中上层温度系统性偏高。在年际变率方面, 除了NCEP1在1967年之前存在偏差, 使其结果和ERA40、20CR不同之外, 三套再分析资料刻画的东亚夏季风变率在其它时段高度一致。三套资料在以纬向风为基础的东亚夏季风指数上的一致性, 高于以经向风为基础的东亚夏季风指数, 其中以低层纬向风为基础的东亚夏季风指数的一致性最高。20CR再分析资料可以较好地再现与东亚夏季风相联系的地表气温和降水年际变化特征, 其刻画的地表气温正相关中心位置偏西、强度最强, 且在河套平原地区有一个弱的负相关中心, 而其描述的降水在孟加拉湾和长江流域较之另外两套再分析资料更接近观测结果, 在热带地区和海上却反之。在年代际变化方面, 20CR再分析资料未能合理再现东亚夏季风年代际减弱的现象, 这也体现在不能合理再现青藏高原下游年代际变冷和“南涝北旱”降水型上, 这主要是因为20CR再分析资料所刻画的东亚地区对流层中上层年代际变冷信号偏弱所致。而在百年时间尺度上, 20CR再分析资料所刻画的东亚夏季风变化与观测较为一致;20CR再分析资料可以合理再现出东亚夏季风区1920年代前的显著冷期和1990年代之后的迅速增暖期, 但对1920~1950年代相对暖期和1950~1980年代相对冷期的再现能力较差。  相似文献   

7.
亚洲夏季风动力学研究综述   总被引:1,自引:0,他引:1  
亚洲夏季风按照气候带可以分为东亚副热带夏季风和亚洲热带夏季风。就气候平均而言,东亚副热带夏季风于4月初在我国江南(泛称“华南”)地区建立,而亚洲热带夏季风首先于5月初在孟加拉湾东北部建立,之后向东推进,于5月第4候到达南海,然而夏季风无法直接西传至印度地区,因此印度夏季风的爆发表现为热带对流在阿拉伯海上空自赤道向北逐步推进的特征。东亚副热带夏季风与亚洲热带夏季风的爆发机制和时空变率都存在明显差异。亚洲夏季风的建立与青藏高原的动力和热力强迫作用联系紧密,其中东亚副热带夏季风的建立又与东亚大陆-西北太平洋的纬向海陆热力差异的季节转换紧密联系,而亚洲热带夏季风的爆发则与亚洲南部地区对流层中上部经向温度梯度的季节变化有关。同时,亚洲热带夏季风的建立过程还与亚洲南部高、低空环流的垂直耦合密切相关。就季节内变化而言,东亚副热带夏季风在4月份表现出10~20天季节内振荡,这与青藏高原表面感热的季节内变化有关,而盛夏的东亚副热带夏季风则存在准双周和21~30天两种振荡信号。亚洲热带夏季风的季节内振荡包含30~60天的北传信号和10~20天的西传信号,其中北传信号与环境气流的垂直切变、边界层辐合以及暖SST下垫面有关。亚洲夏季风年际变率的主要外强迫是ENSO事件,同时印度洋和大西洋海温异常、南极海冰以及青藏高原的冬、春季积雪和感热异常也影响着亚洲夏季风的年际变率。而亚洲夏季风的年代际变化既与气候系统的自然变率有关,又受热带海温强迫、人为排放气溶胶浓度和青藏高原表面热状况长期变化影响。   相似文献   

8.
高原地表过程中冻融过程在东亚夏季风中的作用   总被引:3,自引:0,他引:3  
用茶卡站冻结日数与季风指数的相关简单说明高原冻融过程与东亚夏季风之间存在联系。作为个例,对沱沱河区域1998,1999年从冬到夏过渡季节的冻融过程与感、潜热变化及东亚夏季风建立之间的关系进行了初步分析。结果表明:从冬到夏的过渡季节中,青藏高原的冻融过程与高原加热存在着联系,土壤季节性冻融使得高原地表向大气的感、潜热输送随季节发生变化,青藏高原的加热作用对东亚夏季风的爆发时间和强度有重要影响。因此,高原地表过程中土壤冻融过程在东亚夏季风的爆发过程中扮演着重要角色。  相似文献   

9.
本文用谱分析和经验正交函数分析了1986年夏季风时期亚洲高空越赤道气流和低空赤道西风的低频振荡特征。高低空两支季风气流的30—50天滤波序列的主要经验正交函数能较好地反映亚洲夏季风低频振荡的空间特征。根据EOF1时间序列的振荡位相可以确定东亚夏季风活跃/中断的具体时间。后延相关揭示出北半球500hPa中低纬角动量输送的经向交换同东亚夏季风的低频活动有密切关系。   相似文献   

10.
从观测资料分析了青藏高原西侧绕流偏北风系的年际和年代际变化及其与东亚夏季风和华北地区夏季降水的关系。研究表明 ,前者对后者有很大影响 ,若夏季青藏高原西侧绕流的偏北风系强 ,则东亚夏季风偏南风分量强 ,且华北地区夏季降水可能偏多 ;相反 ,若夏季青藏高原西侧绕流的偏北风系弱 ,则东亚夏季风的偏南风分量弱 ,且华北地区夏季降水可能偏少。分析结果还表明 ,由于从 1 965年之后 (特别从 1 977年之后 ) ,高原西侧绕流的偏北风系减弱 ,可能导致了东亚夏季风的偏南风分量减弱 ,使得输向华北的水汽大大减弱 ,且引起华北地区降水减少 ,发生了持续严重干旱。  相似文献   

11.
基于欧洲中尺度气象预报中心(ECMWF)提供的ERA-Interim地表温度,利用经验正交函数(EOF)等方法,分析了青藏高原四季地表温度的时空变化特征.结果发现:青藏高原春、夏、冬季地表温度变化以整体型为主,并且大部地区地表温度呈现升高的趋势;秋季地表温度略有下降趋势,并且以东部和西部地表温度的反向型异常变化最为显著.此外还发现,青藏高原不同季节地表温度的异常变化具有一定的联系,其中整体型变化可以持续3个季节.  相似文献   

12.
本文利用NCEP/NCAR月平均再分析资料及中国160个测站月降水资料, 采用经验正交函数分解 (EOF)、相关分析、合成分析等方法, 对青藏高原夏季500 hPa纬向风近59年来的年际、 年代际变化趋势及其与我国降水的关系进行了分析。时空演变特征的分析结果表明: 自1950年以来, 青藏高原夏季500 hPa纬向风总体呈现减弱趋势, 其中在1950年代西风偏弱, 1960年代西风明显偏强, 1970年代至21世纪初西风一直处于偏弱阶段; 纬向风变化趋势的空间分布表现为高原大部分区域上空纬向风呈现减弱趋势, 其减弱趋势由东南向西北递增, 高原西北部及中部地区减弱趋势最为明显; 对高原夏季500 hPa纬向风距平时间序列作EOF分解, 得出第一特征向量的空间分布表现为整体减弱型, 其时间权重系数呈现长期正趋势; 时间系数的11年滑动平均分析表明1950年代后期到1960年代中后期纬向西风整体增强趋势比较明显, 1960年代末到21世纪初为西风减弱阶段, 且期间没有出现明显的上升或下降趋势; 时间系数的突变分析表明纬向风在1967年发生了一次较明显的减弱突变; 时间系数的小波分析表明其具有2~4年的周期, 这一周期成分在1950年代前期和1990年代末至21世纪初这两个时段比较显著。年际、 年代际尺度上高原夏季500 hPa纬向风减弱与我国降水关系的分析均表明: 高原纬向风减弱时长江中下游以北的我国部分地区降水偏少, 以东北和华北表现明显, 长江中下游以南地区降水明显偏多, 降水场与大气环流、 水汽通量散度场都有较好的配置关系。  相似文献   

13.
站网均匀化订正对中国夏季气温EOF分析的改进   总被引:1,自引:0,他引:1  
本文对中国160站站网上1960~2010年夏季(6~8月)气温距平场序列进行了站网均匀化订正,对订正前、后的气温距平场序列作了EOF分析.结果表明:(1)订正后的前3个典型场高绝对值区均衡分布在三北(东北、华北、西北)地区、青藏高原和长江中下游地区,与夏季气温均方差场高值区位置基本一致;订正前的前3个特征向量高绝对值...  相似文献   

14.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

15.
影响长江中下游夏季降水的前期潜在预报因子评估   总被引:8,自引:1,他引:7  
郭玲  何金海  祝从文 《大气科学》2012,36(2):337-349
利用1951~2006年美国NOAA海温资料、NCEP/NCAR再分析资料和青藏高原雪深等资料,根据前期海—陆—气因子对夏季长江流域降水的影响,本文搜集并整理了影响长江中下游夏季降水的40个预报因子,并讨论了前期因子与夏季降水在不同阶段的相关稳定性.通过相关和历史回报方法,讨论了前期关键因子与东亚夏季大气环流之间的关系...  相似文献   

16.
通过区分ENSO外部影响和偶极子内部局地作用,探讨了前期春季的印度洋海温异常对南海夏季风建立早晚的可能影响途径。结果表明:在没有去除ENSO信号(外部作用)的情况下,全区一致型的海温分布主要通过影响热带印度洋上空纬向季风环流的强弱来影响南海夏季风建立的早晚。去除ENSO信号后,非ENSO全区一致型的海温分布则主要通过影响低层东西向的气压差异和对流层中上层的南北温度梯度的逆转,进而对南海夏季风建立的早晚产生影响;而南印度洋偶极子(SIODM)型的海温分布则主要通过影响亚洲大陆热低压、西太平洋副热带高压和高低层的辐合辐散运动影响南海夏季风的建立。  相似文献   

17.
东亚夏季风成员的相互作用,构成了东亚夏季风高、低层环流的“多齿轮耦合”形态。本文利用多变量主成分分析(MV-EOF)等方法诊断分析了东亚夏季风多齿轮耦合的变化特征、耦合机制、时间稳定性、空间稳定特征及其对中国夏季降水的影响机制,并在此基础上构建了典型多齿轮耦合形态影响夏季降水的概念模型。结果表明,多齿轮耦合受到垂直温、压场的强迫和青藏高原大地形的影响,主要表现在年际变化上(周期为2~6年)。其前两个模态稳定地反映了东亚夏季风成员典型联动作用。在第一模态中,北方气旋、南亚高压和西太平洋副热带高压为主要耦合系统。其中北方气旋为正压结构,在高层通过南侧偏西气流与南亚高压耦合,南亚高压则通过中纬东部地区下沉辐散气流与西太平洋副热带高压联动。当该耦合模态增强时,有利于中国夏季降水呈自北向南“+-+-”分布。第二模态主要反映中高纬气旋、东亚副热带西风气流、南亚高压、西北太平洋反气旋系统和西太平洋副热带高压耦合特征。其中,中高纬气旋和西北太平洋反气旋为正压系统,两者通过其间的东南气流联动。气旋系统在高层通过南侧西风与东亚副热带西风急流和南亚高压联动。反气旋在中低层通过南侧的偏东气流影响副热带高压强度和面积。当该耦合模态增强时,中国黄河以北及河套地区降水偏多,黄河以南降水偏少。  相似文献   

18.
传统距平与变年循环参照系下的中国气温变率比较   总被引:1,自引:0,他引:1  
用功率谱分析、小波分析和经验正交函数(EOF)分析三种方法,对比分析了1953~2002年北京单站以及中国区域地表气温的传统距平与以集合经验模分解(EEMD)的频-幅调制年循环(MAC)为参照的"距平",同时还比较了用传统距平描述的"年际及更长尺度变率"和以MAC为参照的年以上尺度低频分量。通过对比分析,发现传统距平和用传统距平所描述的"年际及更长尺度变率"仍然包含有年周期,而且还包含有小于年尺度的波动;而去除MAC的距平则更好地去除了准年周期,而且以MAC为参照的年以上尺度低频分量只包含有1年以上尺度的波动,因而更适合用来描述"年际及更长尺度变率"。  相似文献   

19.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

20.
春末夏初青藏高原植被对全球变暖响应的区域特征   总被引:5,自引:3,他引:2       下载免费PDF全文
徐维新  刘晓东 《高原气象》2009,28(4):723-730
利用1982-2002年Pathfinder NDVI遥感数据, 采用REOF和倾向度趋势分析方法, 研究了5~6月青藏高原地表植被变化区域特征及与全球变暖的关系。21年来高原区域春末夏初植被变化存在明显的空间差异, 且存在一个位于高原南北呈带状分布的植被显著变化区域。该区域内植被对全球气温变暖响应显著, 与前期5月北半球平均气温相关系数达到0.7675, 通过0.001显著性水平检验; 植被NDVI随气温升高呈现出显著一致的增加趋势, 增长速率超过10%/10 a, 是全球变暖响应的显著区和敏感区。进一步的分析表明, 对植被全球变暖响应显著的区域基本上处于高山山脉或半荒漠NDVI值低于0.12覆盖度较低的区域。不同植被类型对变暖响应的对比表明, 草地对全球变暖响应明显高于林地, 其植被NDVI 21年约增加10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号