首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ala?at? tuff has been used extensively as a source of building stone for outdoor and indoor decorations since the historical times in and around the tourist town of Ala?at? (western Turkey). The use of the Alacati tuff in buildings has been made compulsory by the Ala?at? municipality, for preserving the historical appearance of the buildings, after 2005 in Ala?at?. It has been noticed that, evident deteriorations developed in tuff surfaces of the stone buildings and garden walls within 5?C6?years of their emplacement. Durability properties of the Ala?at? tuff are evaluated by determining the mineralogical, chemical, and physico-mechanical properties of the fresh tuff samples obtained from the only operative quarry in the area. Ageing tests such as Na2SO4 and MgSO4 salt crystallization, freezing?Cthawing, and wetting?Cdrying were conducted on the fresh tuff samples to assess their durability. Additionally, the durability of the tuff is also evaluated by determining its average pore diameter, saturation coefficient, wet-to-dry strength ratio, static rock and slake-durability indices. Fresh Ala?at? tuff has high porosity and low unit weight and strengths and are classified to be very poor to moderately durable stone based on the test results of different durability assessment methods. Mineralogical and geochemical analyses have also been carried out on the deteriorated tuff samples collected from the surfaces of the stone buildings to determine the effect of weathering on tuff and the test results have been compared with those of the fresh tuff samples. There is no major difference observed between the mineralogy and chemistry of the fresh and weathered tuff samples thus, it has been concluded that physical weathering has been dominant in the area in deterioration of tuff.  相似文献   

2.
In the present work, the relationship between intrinsic factors, mechanical properties and durability of Miocene sandstones used in the architectural heritage of Tunisia, specifically in the Roman aqueduct of Oued Miliane and Uthina site, are studied. The petrographic study and the characterisation of porous network have been carried out using optical microscopy, mercury intrusion porosimetry and laser scanner confocal microscopy (LSCM). The hygric behaviour has also been determined from water absorption under vacuum, drying, capillary water absorption and water vapour permeability. The mechanical properties have been assessed from compressive strength and abrasion tests. Rock durability has been evaluated from salt crystallization (sodium sulphate) accelerated aging tests. The results show good hygric behaviour characterised by a high evaporation rate and almost no retention of water; due to the macroporous character of the rock and the good connectivity of the pore network. Because of the poor lithification, the stone has a very low mechanical strength which makes it very vulnerable to the salt crystallization effects. The absence of chemically unstable minerals preserves the rock from chemical alteration. The durability of the building stone is mainly conditioned by salt loading of the monument.  相似文献   

3.
Pumice is a porous rock, which is formed as a result of volcanic activity and does not include any crystal water. Its porous structure makes it lightweight and provides advantage for heat and sound isolation. Foam concrete is a type of lightweight concrete. Foam concrete is obtained by adding the foam obtained from the agent to the mixture of cement, water, and aggregate. Foam concrete is an environmentally friendly structure and insulation material which provides light, heat, and impact sound insulation that can be used in place of the building elements used in the interior-exterior walls and floors of all buildings. Because of the lack of coarse aggregate in the foam concrete mix, it has some structural problems and this limits its usage area. In this study, four different types of pumice aggregates and stone powder were used to overcome the structural problems of foam. The cement dosages (250 kg/m3), aggregate amounts (250 kg/m3), fresh concrete densities and w/c ratio (0.45) were kept constant in all foamed concrete mixtures. Then, physical, mechanical, and thermal conductivity properties of the resulting foam concretes were investigated. When the findings were evaluated, the most suitable type of lightweight aggregates for use in foam concrete have been determined in terms of compressive strength and thermal conductivity properties. In all aggregate groups, Nevsehir Pumice has the highest compressive strength while Karaman Pumice has the lowest thermal conductivity. However, when both properties were evaluated together, it was determined that the most favorable lightweight aggregate was Nevsehir Pumice.  相似文献   

4.
Weathering and durability are the key factors of the rock in the suitability and usefulness of different construction materials, building materials and engineering structures. A single test never predicts the entire factor for suitability of rock stone and aggregate in different uses. Thus, variety of physical, mechanical and chemical tests and indices of rocks are widely used to estimate and evaluate the rocks for the suitability of the required purpose. In all the cases, knowledge of durability and weathering properties are the most important along with the strength of the rock. Micropetrographic index and rock durability indicators (dynamic and static) are the one of the best methods to evaluate the rock for weathering and durability. To estimate these indices, variety of tests are performed such as petrographic examination test, point load index, sulfate soundness test, water absorption test, modified aggregate impact value test and test for specific gravity. Slake durability index and impact strength index tests were also performed for correlation with static and dynamic rock durability indicators due to its application and usefulness in the durability and strength of the rock materials. Micropetrographic index was obtained by petrographic examination test and correlated with all the physical and mechanical properties used for find out the durability indicators. The present study is to express the usefulness of these three indices in the classification of weathering and durability classes and estimation of durability indices by slake durability index, impact strength index and micropetrographic index.  相似文献   

5.
Repair mortar and mixture of repair mortar with porous limestone sand aggregate were tested under laboratory conditions. Water absorption properties and micro-fabric analyses with a combination of strength tests were applied to assess the durability and compatibility of repair mortar with porous limestone. Uniaxial compressive strength and flexural strength were measured after 3, 7, 14, 28 and 90 days of casting. Durability was tested by comparing strength test results of samples kept air dry, water saturated, dried in drying chamber, freeze–thaw and non-standardized freeze–thaw cycles. The results indicate that with time various trends in strength were observed. In general, limestone aggregate content decreases more the compressive strength more than the flexural strength of the mortar. Standardized freeze–thaw tests of saturated samples caused a rapid material loss after 25 cycles, while freeze–thaw tests of undersaturated samples demonstrated that even after 100 cycles the test specimens still have a significant strength. Water-saturated samples that contain 50% of limestone aggregate have a 50% loss of strength in comparison with saturated repair mortar, while air-dry and water-saturated repair mortar has a minor strength difference after 90 days. The use of smaller amounts of porous limestone aggregate in repair mortar allow the preparation of repairs that are compatible with the monuments of Central Europe that were constructed from porous limestone.  相似文献   

6.
The salt mist present in the coastal shoreline constitutes an important weathering agent of the building materials applied in these regions. Portugal has an extensive coastline, which has a high population density. It holds a long tradition in the use of stone as a building material, due to the abundance of this natural resource, but also because of its durability and beauty. Considering the main ornamental stones mined in Portugal, limestones are the most susceptible to the action of saline atmospheric aerosol, because, in most cases, they present open porosities higher than those of other stone types. This feature facilitates the penetration of saline aerosol in their structures. Six widely applied Portuguese limestones, with different technological properties, were selected for this study. After accessing their petrographic and main technological features, the limestones were submitted to salt mist test. The test method, established in the respective European standard, was complemented with further determinations (variation on water absorption and flexural strength after salt mist cycling). The results allowed evaluating the limestones’ suitability for the main types of applications and for specific usage conditions, within each one. Thus, it was possible to set the recommended uses for each limestone, in order to maximize its durability. Salt mist testing made possible to determine the limestones’ resistance to the climatic conditions of coastal areas. The detailed analysis of the salt mist results strengthens the knowledge that the open porosity plays a decisive role in the limestones’ behaviour to this test.  相似文献   

7.
The formation of a compacted zone under the indenter seems to be the major factor controlling the indentation process in porous rocks. In the case of very porous materials, where the pore structure fails and deformation (by structural collapse) proceeds with almost no increase in the applied load and with very limited damage to the surrounding material, no chipping is observed. The extent of the compacted zone is controlled by the porosity of the material and by the strength of its porous structure. This paper presents an interpretation model developed by the authors to obtain the uniaxial compressive strength of porous materials from the results of indentation tests. It is based on the model proposed by Wilson et al. (Int. J. Mech. Sci., 17, 1975, 457) for the interpretation of indentation tests on compressible foams and on an estimation by the authors of the extent of the compacted zone under the indenter. The results of indentation tests can also be used to obtain the Young's modulus of the material with a model proposed by Gill et al. (Proceedings of the 13th Canadian Symposium on Rock Mechanics, 1980, 1103). Uniaxial compression and indentation tests have been performed on artificial porous materials showing porosities varying between 44 and 68%. The uniaxial compressive strength values obtained from both types of test show a very good agreement. For the Young's modulus, the values obtained from the two types of test are different but the variation of the moduli with porosity is the same. Finally, a parameter called permanent penetration modulus is proposed as a means of characterizing the uniaxial compressive strength of porous materials.  相似文献   

8.
Deterioration mechanisms of tuffs in Midas monument   总被引:3,自引:0,他引:3  
Slightly weathered white and pink tuffs of the Midas monument have deterioration problems. In this study, depths and characteristics of the weathering zones developed within the tuffs are investigated through optical microscopy, X-ray diffractometry (XRD), chemical analyses, scanning electron microscopy (SEM) and some index parameters. Accelerated weathering tests including wetting–drying, freezing–thawing and salt crystallization are performed, and durability assessment methods are used to predict the durabilities of the tuffs. The findings are compared with field observations. By examining quantitative weathering indices and comparing them with thin section studies, it is found that thin section analyses of the crystals, LoI, and WPI are good indicators to quantify the depth of weathering for the tuffs. However, thin section studies have limited value for fine-grained tuffaceous matrix. The chemical weathering of the tuffs produces weathered zones that are 4.5-cm thick within the white tuff and 2.5-cm thick within the pink tuff. Physical weathering causes scaling of outer layers of the tuffs and fracturing of feldspars along their cleavage planes. However, variations of the index properties of the tuffs due to weathering are not so significant to quantify the weathering depths in the tuffs. Among the accelerated weathering tests, salt crystallization is found to be the most destructive environmental condition. Pigeon droppings rich in NO31− are found to be the main source of soluble salt at the Midas monument. The salt transported up by capillary rise due to surface water causes spalling of the tuffs in the capillary zone. Surface water and salt of any kind in the close vicinity of the monument should be totally eliminated for the purpose of conservation. Field observations and the durability equations reveal that the white tuff is less durable than the pink tuff. Wet-to-dry strength ratio yields a better stone durability assessment among various durability methods used in this study.  相似文献   

9.
Lateritic soils which have been described as highly weathered tropical or subtropical residual soils were studied with an attempt to establish its suitability or otherwise as sustainable material in building bricks and housing development that will meet the present challenge of sustaining the environment without costing too much and maintaining a high standard of strength, durability and aesthetics. Index properties of the tested lateritic soils revealed them as mostly well graded, comprising both cohesive (silt and clay) and cohesionless (sand and gravel) soil fraction. The geotechnical analyses on the studied lateritic soil revealed a strong compressive strength with a relatively sound dry density which could guarantee a good durability in resulting bricks made from these soil materials. Further test on the strength and durability of the compressed earth bricks (CEBs) made from these lateritic soils revealed a brick with compressive strength ranging between 6.33 and 15.57 MPa which is considered to be of good strength coupled with its sound durability strength established over a period of more than one year under a complete cycle of weather and seasonal conditions. In conclusion, lateritic soils from the study area were found to be suitable as materials for bricks (CEB) with good compressive and durability strength which qualifies them as sustainable and cost-effective materials for low-cost housing development.  相似文献   

10.
An experimental study was performed to investigate the effect of perlite and perlite–lime admixtures on classification, shear strength, and durability properties of an expansive soil containing smectite clay minerals. Two types of mixtures, namely soil–perlite and soil–perlite–lime, were prepared with different percentages of perlite and compacted with standard Proctor energy at their optimum water contents. Samples of 38 mm diameter and 76 mm height for durability tests and square samples of 60 mm edge for shear box test were taken and preserved until test time in a desiccator. Disturbed samples were also taken to determine liquid and plastic limits. The expansive soil shows behavior of fine sand and silt due to pozzolanic reactions in microstructure caused by addition of lime and perlite. Although apparent cohesion of treated soil decreased with increasing amount of perlite for both types of samples, perlite–lime-treated samples had higher apparent cohesion than only perlite-treated samples. Large increments in angle of shearing resistance were obtained with increasing usage of perlite. Samples stabilized with only perlite could not show enough durability at the durability tests based on volumetric stability and unconfined compression strength. However, samples stabilized with lime and more than 30 % perlite proved to have enough durability and shear strength.  相似文献   

11.
长短桩高强复合地基在高层建筑中的应用   总被引:3,自引:0,他引:3  
林本海  方辉 《岩土力学》2009,30(Z2):302-307
长短桩高强复合地基能充分调动桩间土体参与工作,并在竖向方向上的刚度梯度变化与附加荷载的应力扩散变化趋势相同。以考虑不同桩体长度、桩体刚度和考虑周围多层土体分布的长短桩相互作用计算模型为依据,对某高层建筑进行长短桩高强复合地基的分析设计计算,通过与实测数据对比,表明长短桩高强复合地基应用于高层建筑可以满足承载力和沉降的要求。长短桩高强复合地基因其高承载力、经济性优越和施工灵活并工期短的特点,将会成为高层建筑桩基础的巨大挑战。  相似文献   

12.
吴文  王贵宾  冒海军 《岩土力学》2010,31(12):3709-3714
为了研究孔隙对白云岩力学特性的影响,从四川某地露头和深度大于5 000 m的深部白云岩地层进行了取样, 系统地研究了孔隙对白云岩的力学特性的影响。孔隙度是石油或天然气白云岩储层的重要特征之一。白云岩的试样孔隙度变化范围在6%~12%之间。在实验室对白云岩进行了单轴抗压强度试验、巴西劈裂法抗拉强度试验、直剪试验和三轴抗压强度试验。单轴抗压强度试验结果表明,岩石中孔隙度越高,岩石强度就越低。在不同围压作用下的多轴试验结果表明,在某一围压作用下,岩石的强度随着孔隙度的增加而减少;在相同孔隙度的岩石,应力偏量(三轴峰值应力)随着围压的增加而增加。介绍了孔隙岩石的MSDPu屈服本构模型,结果显示该模型能够较好地描述孔隙岩石的屈服特性。  相似文献   

13.
The durability is a measure of the rock’s ability to resist degradation during its working life. Rock durability is greatly related to the mineralogical composition of rocks, rock texture (crystal interlocking, crystal shape and size), and the nature of fluids that are in contact with rock. Marbles have been among the most important building materials since ancient times. The main aim of this study is to evaluate the durability of Al Masjid Al-Haram marble and Ordinary white marble “Carrara” (M1 and M2) and develop some correlations among the physical and mechanical properties such as P-wave velocity, slake durability index, dry uniaxial compressive strength (UCSDry), abrasion resistance, point load index, impact strength index, Brazilian tensile strength, and Shore hardness. After testing and the evaluation of the test results, strong statistical correlations were found between P-wave velocity and other rock properties. Statistical correlations between the UCSDry other tests were also carried out. The coefficients of regressions (R2) range from 0.6177 to 0.997. The study shows that the UCSDry values of M1 and M2 have positive relationship with P wave velocities. Concluding remark is that the rocks tested in the study have good durability characteristics and can be reliably used for construction projects. On the other hand, the derived empirical equations can be used for the estimation purposes for similar rock types.  相似文献   

14.
In this study, an experimental salt weathering simulation and porous stone durability classification are proposed. There are many laboratory tests that quantify durability against salt crystallisation weathering action. These are usually based on the total immersion of samples into a saline solution, which is not representative of the salt weathering mechanism. An experimental test based on partial immersion is suggested. This is a comparable study of weight loss and degradation of visual appearance due to salt crystallisation using, on the one hand, a standard durability test (UNE), and, on the other, the proposed durability test. The weight loss and visual appearance in our test is comparable to the degradation of building stone. The differences between weight loss data in both tests depend on the petrophysical properties: porous media and degree of coherence.

From this testing, a new durability classification as a function of dry weight loss in the partial immersion test is proposed. Four divisions of different types of materials can be made in this classification, which quantifies salt weathering action mainly in environments and mild climatic conditions.  相似文献   


15.
A detailed investigation of the strength properties of Calico Hills tuff was undertaken to further characterize the behavior of this unit. Uniaxial compression tests on 43 specimens of massive and reworked tuff show a dependence of peak strength and Young's modulus on the total porosity, and thereby on the geologic history of the Calico Hills tuff. The average Young's modulus, Poisson's ratio, and compressive (peak) strength of dry specimens of massive (and reworked) tuff are: 5.43±0.96 GPa (9.80±0.89 GPa), 0.194±0.052 (0.244±0.067), and 26.34±5.13 MPa (38.64±4.96 MPa). Wet specimens of massive tuff have compressive strengths of 15.34±0.70 MPa, lower than those of dry specimens. The post-peak region for this brittle tuff is characterized by rapid load drops and well-defined residual strengths associated with growth of macrocracks and small faults in the specimens.  相似文献   

16.
Analyses of deterioration of the Cappadocian tuff, Turkey   总被引:8,自引:3,他引:5  
 The Cappadocian tuff contains unique erosional features, the so-called fairy chimneys, some of which in the past were dwelled in and contain valuable wall paintings. These historical heritages, however, are undergoing chemical and physical deterioration due to atmospheric effects. For the conservation studies, understanding of the deterioration phenomenon of the tuff is essential. In this study, engineering geological and physicochemical characteristics of the tuff were determined. The durability of the tuff was assessed through wetting-drying, freezing-thawing, and salt crystallization. The test results suggest that chemical weathering may be traced to a depth of 2 cm below lichen-covered surfaces and 20 cm adjacent to discolored joint walls. Based on durability assessment methods, the tuff may be classified as having poor to very poor durability. Received: 16 December 1996 · Accepted: 3 April 1997  相似文献   

17.
聚丙烯纤维低弹模混凝土以其优良的工作性能和力学性能成为近年来我国水利工程大坝防渗墙采用的主要材料之一.在室内试验的基础上,对聚丙烯低弹模混凝土的强度、塌落度特性进行了研究;开发了一套混凝土耐久性渗透水采集仪,对聚丙烯低弹模混凝土的渗透性和耐久性进行了研究,试验结果表明:与传统低弹模混凝土相比,聚丙烯低弹模混凝土的抗压、弹模变化不大,抗拉强度有提高,抗渗性能明显改善,渗透系数降低了一个数量级左右,耐久性年限可以进一步提高,研究结果为聚丙烯低弹模混凝土大坝防渗墙的工程应用提供了技术支撑.  相似文献   

18.
The report analyses the main properties pertaining to the durability of Finnish granitoid rocks, based upon extensive field and laboratory data collected during the past ten years. Commercial materials have been tested and compared along ten years of production and their frost resistance assessed according to European standards. Laboratory tests have been coupled with non-destructive methods most used on site assessment as ultra-pulse velocity and Schmidt hammer in order to compare the results of commercial materials with materials on construction site. Evaluation of durability has included petrographic analysis, crack density, and for site exposed material, chemical analysis, to understand the environmental effects on it. The material has generally maintained its original properties. It has natural heterogeneity, and it presents higher interlocked cracking network on the surface of the exposed materials. Site samples in some cases have shown chemical changes due to environmental actions.  相似文献   

19.
One of the properties that makes marble such an excellent construction and ornamental material is its low porosity. It is very difficult for water or decay agents to penetrate the internal structure of materials with no or few pores, so enhancing the durability of these materials. However, environmental temperature fluctuations bring about significant physical changes in marbles that result in an increase in porosity, due to the appearance of new microcracks and the expansion of existing ones. These cracks offer new paths into the marble which make it easier for solutions containing pollutants to penetrate the material. Thermal expansion tests were performed on three different types of marble known as White, Tranco, and Yellow Macael (Almeria, Spain), after which an increase in porosity (from 17 to 73% depending on marble type) was observed, mainly due to crack formation. The structural changes occurring during thermal expansion tests were more significant in the case of White Macael samples, a fact that is not only related to its mineralogical composition but also to the morphology of the grains, grain boundaries and crystal size. Our research suggests that thermally weathered White Macael marble could be more susceptible to decay by other contaminant agents than Tranco or Yellow Macael. The use of hot-stage environmental scanning electron microscopy is proposed as a valid tool for observing, both in situ and at high magnification, changes in the fracture system of building stones induced by thermal stress.  相似文献   

20.
Within the last few years several studies have been completed to evaluate strength, stiffness, and durability properties of pulverized coal combustion (PCC) bottom ash mixed with various admixtures. Studies have shown that strength and stiffness of PCC bottom ash mixed with sodium bentonite changes with the increase in the curing period. Researchers have concluded that this change is due to the chemical composition of the bottom ash and bentonite. In order to understand the reasons for the change in characteristics of bottom ash-bentonite mixtures with time, the strength and structural characteristics of bottom ash-bentonite mixtures cured for various periods was evaluated. Results of the strength testing showed increase in strength and stiffness of the mixtures with curing period. The results of structural analysis using environmental scanning electron microscopy show development of fibrous elements which may cause increase in the unconfined compressive strength and stiffness of the mixtures with the curing period. Selected results from this study are presented herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号