首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》2000,13(4):189-245
3D stratigraphic geometries of the intracratonic Meso-Cenozoic Paris Basin were obtained by sequence stratigraphic correlations of around 1 100 wells (well-logs). The basin records the major tectonic events of the western part of the Eurasian Plate, i.e. opening and closure of the Tethys and opening of the Atlantic. From earlier Triassic to Late Jurassic, the Paris Basin was a broad subsiding area in an extensional framework, with a larger size than the present-day basin. During the Aalenian time, the subsidence pattern changes drastically (early stage of the central Atlantic opening). Further steps of the opening of the Ligurian Tethys (base Hettangian, late Pliensbachian;...) and its evolution into an oceanic domain (passive margin, Callovian) are equally recorded in the tectono-sedimentary history. The Lower Cretaceous was characterized by NE–SW compressive medium wavelength unconformities (late Cimmerian–Jurassic/Cretaceous boundary and intra-Berriasian and late Aptian unconformities) coeval with opening of the Bay of Biscay. These unconformities are contemporaneous with a major decrease of the subsidence rate. After an extensional period of subsidence (Albian to Turonian), NE–SW compression started in late Turonian time with major folding during the Late Cretaceous. The Tertiary was a period of very low subsidence in a compressional framework. The second folding stage occurred from the Lutetian to the Lower Oligocene (N–S compression) partly coeval with the E–W extension of the Oligocene rifts. Further compression occurred in the early Burdigalian and the Late Miocene in response to NE–SW shortening. Overall uplift occurred, with erosion, around the Lower/Middle Pleistocene boundary.  相似文献   

2.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

3.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

4.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

5.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   

6.
东地中海经历了伸展-聚敛的构造演化旋回,聚集了丰富的油气资源。基于2D地震、ODP Leg160、IHS及Tellus商业数据库和公开发表的文献资料,本文在建立东地中海及周缘构造-地层格架的基础上,恢复了东地中海12个关键地质历史时期的原型盆地,并以板块构造为切入点探讨了盆地演化机制。东地中海及周缘上三叠统以来地层可划分为新特提斯被动大陆边缘陆地及浅水区、新特提斯被动大陆边缘深水区和塞浦路斯弧前褶皱区3个地层分区,前两个地层分区均发育一套裂谷-被动大陆边缘层系,但是二者的岩相特征和不整合发育有明显的差异,而塞浦路斯弧前褶皱区发育一套大洋盆地-弧前盆地层系。研究认为东地中海经历了二叠纪—早侏罗世裂解期、中侏罗世巴柔期—晚白垩世土伦期漂移期和晚白垩世森诺期以来的汇聚改造期3个原型阶段,其中汇聚改造期又可细分为晚白垩世森诺期“双俯冲带”消减期、古近纪北部俯冲-碰撞期、中新世塞浦路斯岛弧带南侧俯冲-碰撞与黎凡特边缘活化期和中新世梅西期以来“弧-山碰撞”与“走滑逃逸”期4个阶段。东地中海盆地演化受控于图哈罗德-安纳托利亚板块以及凯里尼亚、特罗多斯和埃拉托色尼等微板块与冈瓦纳大陆北缘的分离、向北的漂移和与欧亚大陆汇聚拼贴的板块构造活动。  相似文献   

7.
This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.  相似文献   

8.
Results from coal‐exploration drilling in the onshore part of the Port Phillip Basin, Victoria, have established stratigraphic and age correlations of the Lower Miocene Werribee Formation brown coal deposits at Bacchus Marsh to similar brown coals at Altona. The coal deposits occur in a northwest‐southeast structural depression (the Parwan Trough) that appears to be a southeast continuation of the Ballan Graben. Recent drilling for potential coal‐bed methane in the trough has provided new data on the deeper stratigraphy not penetrated by earlier drilling, including recognition of an Upper Cretaceous to Eocene Yaloak Formation coal‐bearing interval, similar to the Anglesea area, Ballan Graben and Lal Lal Basin. Up to 200 m of coal‐bearing sediment and minor volcanics underlie the Miocene coal measures. A marine facies transition takes place between the Miocene coal swamps of the Parwan Trough, through barrier sands west of Werribee, to carbonate facies near Geelong. To the south beneath Port Phillip Bay, a similar transition probably occurs between coal swamps of the Parwan Trough and fully marine carbonate environments of the contiguous Sorrento Graben. The palaeogeographical reconstructions suggest a similar coal‐to‐carbonate facies transition as in the adjacent onshore Gippsland Basin.  相似文献   

9.
阿尔及利亚Chelif盆地中—新生界烃源岩研究   总被引:1,自引:0,他引:1  
Chelif盆地的勘探在近半个世纪一直没有突破,是否存在有效烃源岩成为制约勘探决策的主要因素。在分析Chelif盆地地表和钻井样品地球化学特征的基础上,研究和预测了中—新生界烃源岩性质与分布,并且采用ΔlogR技术计算TOC含量以弥补露头采样的不足。研究显示,Chelif盆地是阿尔及利亚西北部的中—新生界叠合盆地。在白垩纪Chelif盆地处于被动大陆边缘的拉张构造环境,属于海相盆地;到新生代盆地演变为山间盆地,经历断坳演化过程,形成了快速充填的沉积特征。盆地发育上白垩统、下中新统和上中新统3套烃源岩,有机质丰度显示,该烃源岩为中等—好烃源岩,含Ⅱ型干酪根,有机质热演化处于低成熟—成熟阶段。上白垩统泥灰岩为盆地的主力烃源岩,盆地油气源较丰富,具有较好的勘探前景。  相似文献   

10.
The United Arab Emirates(UAE) is the 8 th largest oil producing country and is rich in oil and gas resources. By the end of 2015, 68 oil and 23 gas fields had been discovered. The initial proved and probable(2 P) oil, gas and condensate reserves amount to 81,135.9 MMb(million barrels), 192.09 Tcf(trillion cubic feet),and 6496.58 MMb respectively, which are mostly reservoired in the Jurassic and Cretaceous carbonates. With the latest field data, this study attempts to document the salient features of petroleum systems in UAE. Based on depositional facies of source rock intervals, pods of source rocks were delineated. On the basis of an oiland gas-source correlation, five known petroleum systems were identified and they are Lower Silurian-Upper Permian Khuff gas, northeast foreland Upper Jurassic-Lower Cretaceous gas, Upper Jurassic-Jurassic petroleum, Upper Jurassic/Lower Cretaceous-Lower Cretaceous composite petroleum, and Middle Cretaceous-Middle to Upper Cretaceous/Cenozoic petroleum systems. Of them, the Upper Jurassic/Lower Cretaceous-Lower Cretaceous composite petroleum system contains 73.2% of the total 2 P reserves and thus it is the focus of this study. The Upper Jurassic and Lower Cretaceous source rocks consist of argillaceous limestone, mudstone and shale, which were deposited as intrashelf basin facies. The distribution of oil and gas in this system is controlled by the source kitchens and the regional evaporite seal.  相似文献   

11.
通过野外地质调查和地层对比,将尼玛北部盆地新生代陆相地层定为牛堡组。根据岩石组合和沉积特征分析,尼玛北部盆地牛堡组可划分为扇三角洲相、湖泊相和冲积扇相。扇三角洲相可进一步划分为扇三角洲前缘和前扇三角洲2种亚相;湖泊相可划分为半深湖—深湖和滨湖—浅湖2种亚相。盆地的演化特征可分为盆地形成初始期、盆地扩张期和盆地萎缩期,3期的演化可分别对应牛堡组的一段、二段和三段。尼玛北盆地发育的各个阶段都跟古气候变化和构造活动有很大的联系,两者共同影响着盆地发育的各个阶段。结合前人的研究资料,认为尼玛盆地的发育时代为早白垩世末期—晚白垩世初。根据盆地边缘相与半深湖—深湖沉积相伴生、牛堡组底部发现火山岩夹层等沉积特征,可以推断尼玛盆地是一个具有走滑拉张性质的盆地。  相似文献   

12.
The Numidian Sequence represents one of the main tectono-stratigraphic units involved in the geological evolution of the Maghrebian orogen during the Upper Oligocene-Lower Miocene. Geo-structural aqalysis led to the reconstruction of tectonc-stratigraphic units and recognition of two main tectonic phases (Eocene and Lower Miocene). Sedimentological analysis of the studied sections has resulted in the distinction of arenaceous and conglomeratic facies generated by debris flows or high-density turbidity currents on a submarine slope, present within the pelitic-arenaceous and arenaceous-pelitic sequences which also contain slumped units in places. Previous and new micropalaeontological data indicate Late Oligocene-Early Burdigalian ages for the Numidian sequences of the Constantine Mountains. On the basis of petrographic study the Numidian rocks can be classified as poorly sorted quartzarenites containing siliciclastic matrix. The overall petrographic data indicate that the Continental intercalaire (Hoggar, Tassili and Fezzan) and Series Pharusienne (Hoggar and Eglab) are possible supply areas for the Numidian quartz.  相似文献   

13.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

14.
Late Cretaceous sedimentary history has been strongly influenced by both sea-level fluctuations and inversion tectonics. Evidence for tectonic movements, originally identified in German Late Cretaceous basins, is applied to the UK successions. Two periods of movement are conspicuous: a Middle Turonian episode involving huge loss of section along anticlinal axes in southern England and a Late Santonian-Early Campanian episode also involving section loss on structure and section gain off structure. This pattern is repeated where folds or blocks are underlain by inversion thrust faults (e.g. the Purbeck Fault in Dorset, the Falmer Fault in Sussex, the Portsdown Fault in Hampshire and the Bray Fault in Upper Normandy). Other episodes of inversion in the Late Turonian to Middle Coniacian and the late Early Campanian are investigated and are a probable cause of slump beds and slides. These tecto-sedimentary episodes can be applied to structures in Northern Ireland, Inner Hebrides, North Sea and Yorkshire as well as southern Britain. Beyond NW Europe the Late Santonian – Early Campanian event is widely recognised in the Carpathians, southern Europe, Africa and the Levant and coincides with the end of the Long Cretaceous Quiet Zone (Chron 34N to 33R) perhaps representing a major change in Earth dynamics related to Mid-Ocean Ridge crustal production and intra-continental crust tectonism.  相似文献   

15.
通过开展二维地震资料调查和重处理,结合钻井、重磁、海陆对比等新老资料开展联合解释认为:东海陆架盆地南部中生界具有分布广、厚度大、沉积中心位于东部,新生界则呈现东西厚中间薄,新生代构造单元中的台北凸起、观音凸起和雁荡凸起上均有中生界分布;白垩系较侏罗系分布更为广泛,侏罗系西部边界为雁荡凸起东侧,白垩系西部边界以瓯江凹陷西侧为界;中生界三口钻井分析结果发现了确凿的海相标志,证实了中生界东海陆架盆地发生多次海侵,结合围区沉积特征认为侏罗纪存在南北向和东西向的海侵,白垩纪主要体现为东西向的海侵;研究区中生界发育中下侏罗统、下白垩统两套烃源岩,新生界发育古新统、始新统、渐新统和中新统四套烃源岩,具有较好的油气资源前景。  相似文献   

16.
The Northern Calcareous Alps (NCA) of southern Bavaria and northern Tyrol constitute a carbonate-dominated polyphase fold-thrust wedge; together with its Grauwacken Zone Basement, it is the northernmost part of the far-travelled Upper Austroalpine thrust complex of the Eastern Alps. The present geometry developed in several kinematic stages. Jurassic extensional faults that affected large parts of the NCA and their basement originated when the main part of the NCA was still located southeast of the Central Alpine Ötztal-Silvretta complex. These faults and related facies transitions influenced the later style of detachment of the NCA thrust sheets. Mid to Late Cretaceous detachment, thrust-sheet stacking and motion over the Central Alpine complex are registered in clastic deposits of syntectonic basins. The latest Cretaceous to Cenozoic NNE- to N-directed motion of the NCA towards Europe in front of the Central Alpine complex created another set of significant contraction structures, which at depth overprinted all previous structures. During Cretaceous to Cenozoic deformation, the NCA experienced about 80 km of shortening, i.e., about 73% along the TRANSALP Profile. The European basement and autochthonous Mesozoic cover beneath the allochthonous NCA thrust sheets and flysch complexes seem to have remained relatively undeformed.  相似文献   

17.
Disperse and punctual studies; absence of integration of data ranging from local to regional focus; interpretations based only on lithostratigraphic features; and interpretation of data premised on an allochthonous origin of the Caribbean plate, are some of factors that increase the confusion and uncertainty in understanding the Sinú-San Jacinto Basin. The sedimentary record of Upper Cretaceous to Eocene has been traditionally interpreted as the record of deep-water settings. However, recently these sediments have been related to shallow marine and deltaic settings. Second problematic point is about the deposition environment of the Oligocene to Late Miocene succession. Some studies suggest canyons, turbidites and sediments deposited in deep-water settings. However, recent studies propose deltaic and shallow marine settings. The last stratigraphic problem is related to the controversial fluvial vs. shallow marine interpretations of the Pliocene sediments. Based upon seismic stratigraphic analysis in recent and reprocessed 2D seismic data, integrated with well data, we propose chronostratigraphic charts for the northern, central and southern zones of the Sinú-San Jacinto Basin. Twenty seismic facies based on amplitude, continuity, frequency and geometry of seismic reflectors and twelve seismic sequences were recognized. The seismic stratigraphic analysis in this study suggests that the sediments of Upper Cretaceous to Paleocene/Eocene were associated to continental to shallow marine settings. Lagoons, coastal plain and carbonate platform dominated during this period. The Oligocene to Middle Miocene record was characterized by deep-water deposition, whereas the Late Miocene to recent sedimentation was characterized by falling base level, characterized by deltaic and fluvial deposits. Five syn-rift sequences with wedge-shaped geometry were identified in this study. Three Triassic to Jurassic syn-rift sequences were characterized by seismic facies typical of fluvial to lacustrine and flood plain sedimentation. Two Cretaceous to Paleocene syn-rift sequences were characterized by seismic facies related to lagoons to coastal plain settings. Normal high-angle faults with a northeast-southwest direction related to rifting processes controlled the development of these sequences. The sheet-drape post-rift section was characterized by passive margin settings in the northern part of the Sinú-San Jacinto Basin and by diachronic tectonic inversion of older normal faults during Cenozoic, predominantly in the central and southern zones. The stratigraphic record related to the Mesozoic to Early Cenozoic rifting; the shallow marine sedimentation during Eocene and the tectono-stratigraphic continuity across the northern Colombia and northwestern Venezuela is coherent and well explained by the in situ origin of the Caribbean plate and is not explained by the “allochthonous” model.  相似文献   

18.
Formation of Mesozoic western China, which was dominated by tectonic amalgamation along its southern margin and associated intracontinental tectonisms, holds a key for interpreting the succedent Cenozoic evolution. This paper presents new data including lithology, sedimentary facies, stratigraphic contact, seismic interpretation and paleo-structures within the Upper Jurassic-Lower Cretaceous strata in the northern Qaidam Basin, NW China. These data all account for a contractional tectonic deformation in the earliest Cretaceous. The South Qilian Shan, according to the sedimentary features and provenance analysis, reactivated and exhumated during the deformation, controlling the deposition of the Lower Cretaceous sequences. A simplified model for the Late Jurassic-Early Cretaceous paleogeography and tectonics of the northern Qaidam Basin is accordingly proposed. The results also support a ∼25° clockwise rotation of the Qaidam Basin since the Early Cretaceous and a more accurate Mesozoic evolution process for the basin. This earliest Cretaceous deformation, associated with the reactivation of the South Qilian Shan at the time, are part of the intracontinental tectonisms in central Asia during the Mesozoic, and probably driven by both the closure of the Mongol-Okhostk Ocean to the north and the collision of the Lhasa and the Qiangtang blocks to the south.  相似文献   

19.
新疆塔里木盆地白垩—第三纪沉积相及储集体分析   总被引:2,自引:1,他引:2  
根据沉积特征、岩石矿物特征、生物特征及地球化学特征的综合分析,将塔里木盆地白垩-第三系划分为3个沉积相组、12个沉积相、20个沉积亚相和若干个沉积微相,并首次在塔北发现海相沉积,塔里木盆地白垩-第三纪储集体包括碎屑岩和碳酸盐岩两种,东北坳陷区储层主要为碎屑岩,特别是下白垩统卡普沙良群亚格列木组是沙雅隆起上的重要储层,上白垩统巴什基奇克组是库车前陆盆地的重要储层,西南坳陷区储层包括碎屑岩储层和碳酸盐岩储层两种岩性,如下白垩统上部乌鲁克恰特组滨岸海滩硝砾岩及上白垩统依格孜牙组生物丘灰岩等也构成较好的储集层。  相似文献   

20.
Notes de lecture     
Abstract

3D stratigraphic geometries of the intracratonic Meso- Cenozoic Paris Basin were obtained by sequence stratigraphic correlations of around 1 100 wells (well-logs). The basin records the major tectonic events of the western part of the Eurasian Plate, i.e. opening and closure of the Tethys and opening of the Atlantic. From earlier Triassic to Late Jurassic, the Paris Basin was a broad subsiding area in an extensional framework, with a larger size than the present-day basin. During the Aalenian time, the subsidence pattern changes drastically (early stage of the central Atlantic opening). Further steps of the opening of the Ligurian Tethys (base Het- tangian, late Pliensbachian;...) and its evolution into an oceanic domain (passive margin, Callovian) are equally recorded in the tectono-sedimentary history. The Lower Cretaceous was characterized by NE-SW compressive medium wavelength unconformities (late Cimmerian-Jurassic/Cretaceous boundary and intra- Berriasian and late Aptian unconformities) coeval with opening of the Bay of Biscay. These unconformities are contemporaneous with a major decrease of the subsidence rate. After an extensional period of subsidence (Albian to Turanian), NE-SW compression started in late Turanian time with major folding during the Late Cretaceous. The Tertiary was a period of very low subsidence in a com- pressional framework. The second folding stage occurred from the Lutetian to the Lower Oligocene (N-S compression) partly coeval with the E-W extension of the Oligocene rifts. Further compression occurred in the early Burdigalian and the Late Miocene in response to NE-SW shortening. Overall uplift occurred, with erosion, around the Lower/Middle Pleistocene boundary. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号