首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Techniques from dynamical systems theory have been applied to the construction of transfers between unstable periodic orbits that have different energies. Invariant manifolds, trajectories that asymptotically depart or approach unstable periodic orbits, are used to connect the initial and final orbits. The transfer asymptotically departs the initial orbit on a trajectory contained within the initial orbit’s unstable manifold and later asymptotically approaches the final orbit on a trajectory contained within the stable manifold of the final orbit. The manifold trajectories are connected by the execution of impulsive maneuvers. Two-body parameters dictate the selection of the individual manifold trajectories used to construct efficient transfers. A bounding sphere centered on the secondary, with a radius less than the sphere of influence of the secondary, is used to study the manifold trajectories. A two-body parameter, κ, is computed within the bounding sphere, where the gravitational effects of the secondary dominate. The parameter κ is defined as the sum of two quantities: the difference in the normalized angular momentum vectors and eccentricity vectors between a point on the unstable manifold and a point on the stable manifold. It is numerically demonstrated that as the κ parameter decreases, the total cost to complete the transfer decreases. Preliminary results indicate that this method of constructing transfers produces a significant cost savings over methods that do not employ the use of invariant manifolds.  相似文献   

2.
Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth–Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth–Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at \(L_2\) .  相似文献   

3.
The importance of the stability characteristics of the planar elliptic restricted three-body problem is that they offer insight about the general dynamical mechanisms causing instability in celestial mechanics. To analyze these concerns, elliptic–elliptic and hyperbolic–elliptic resonance orbits (periodic solutions with lower period) are numerically discovered by use of Newton's differential correction method. We find indications of stability for the elliptic–elliptic resonance orbits because slightly perturbed orbits define a corresponding two-dimensional invariant manifold on the Poincaré surface-section. For the resonance orbit of the hyperbolic–elliptic type, we show numerically that its stable and unstable manifolds intersect transversally in phase-space to induce instability. Then, we find indications that there are orbits which jump from one resonance zone to the next before escaping to infinity. This phenomenon is related to the so-called Arnold diffusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Over the past three decades, ballistic and impulsive trajectories between libration point orbits (LPOs) in the Sun–Earth–Moon system have been investigated to a large extent. It is known that coupling invariant manifolds of LPOs of two different circular restricted three-body problems (i.e., the Sun–Earth and the Earth–Moon systems) can lead to significant mass savings in specific transfers, such as from a low Earth orbit to the Moon’s vicinity. Previous investigations on this issue mainly considered the use of impulsive maneuvers along the trajectory. Here we investigate the dynamical effects of replacing impulsive ΔV’s with low-thrust trajectory arcs to connect LPOs using invariant manifold dynamics. Our investigation shows that the use of low-thrust propulsion in a particular phase of the transfer and the adoption of a more realistic Sun–Earth–Moon four-body model can provide better and more propellant-efficient solution. For this purpose, methods have been developed to compute the invariant tori and their manifolds in this dynamical model.  相似文献   

5.
A method for space mission trajectory design is presented in the form of a greedy global search algorithm. It uses invariant manifolds of unstable periodic orbits and its main advantage is that it performs a global search for the suitable legs of the invariant manifolds to be connected for a preliminary transfer design, as well as the appropriate points of the legs for maneuver application. The designed indirect algorithm bases the greedy choice on the optimality conditions that are assumed for the theoretical minimum transfer cost of a spacecraft when using invariant manifolds. The method is applied to a test case space mission design project in the Earth–Moon system and is found to compare favorably with previous techniques applied to the same project.  相似文献   

6.
In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.  相似文献   

7.
The proposed method connects two unstable periodic orbits by employing trajectories of their associated invariant manifolds that are perturbed in two levels. A first level of velocity perturbations is applied on the trajectories of the discretized manifolds at the points where they approach the nominal unstable periodic orbit in order to accelerate them. A second level of structured velocity perturbations is applied to trajectories that have already been subjected to first level perturbations in order to approximately meet the necessary conditions for a low \(\varDelta \text {V}\) transfer. Due to this two-level perturbation approach, the number of the trajectories obtained is significantly larger compared with approaches that employ traditional invariant manifolds. For this reason, the problem of connecting two unstable periodic orbits through perturbed trajectories of their manifolds is transformed into an equivalent discrete optimization problem that is solved with a very low computational complexity algorithm that is proposed in this paper. Finally, the method is applied to a lunar observation mission of practical interest and is found to perform considerably better in terms of \(\varDelta \text {V}\) cost and time of flight when compared with previous techniques applied to the same project.  相似文献   

8.
We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.  相似文献   

9.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for many decades. This paper is concerned with a topological study of such transfers, with emphasis to trajectories that allow performing lunar capture and those that exhibit homoclinic connections, in the context of the circular restricted three-body problem. A fundamental theorem stated by Conley locates capture trajectories in the phase space and can be condensed in a sentence: “if a crossing asymptotic orbit exists then near any such there is a capture orbit”. In this work this fundamental theoretical assertion is used together with an original cylindrical isomorphic mapping of the phase space associated with the third body dynamics. For a given energy level, the stable and unstable invariant manifolds of the periodic Lyapunov orbit around the collinear interior Lagrange point are computed and represented in cylindrical coordinates as tubes that emanate from the transformed periodic orbit. These tubes exhibit complex geometrical features. Their intersections correspond to homoclinic orbits and determine the topological separation of long-term lunar capture orbits from short-duration capture trajectories. The isomorphic mapping is proven to allow a deep insight on the chaotic motion that characterizes the dynamics of the circular restricted three-body, and suggests an interesting interpretation, and together corroboration, of Conley’s assertion on the topological location of lunar capture orbits. Moreover, an alternative three-dimensional representation of the phase space is profitably employed to identify convenient lunar periodic orbits that can be entered with modest propellant consumption, starting from the Lyapunov orbit.  相似文献   

10.
Orbits and manifolds near the equilibrium points around a rotating asteroid   总被引:6,自引:0,他引:6  
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.  相似文献   

11.
Impulsive time-free transfers between halo orbits   总被引:1,自引:0,他引:1  
A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L 1 libration point of the Sun-Earth/Moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristic velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.An earlier version was presented as Paper AIAA 92-4580 at the AIAA/AAS Astrodynamics Conference, Hilton Head Island, SC, U.S.A., August 10–12, 1992.  相似文献   

12.
Taking transfer orbits of a collinear libration point probe, a lunar probe and an interplanetary probe as examples, some applications of stable and unstable invariant manifolds of the restricted three-body problem are discussed. Research shows that transfer energy is not necessarily conserved when invariant manifolds are used. For the cases in which the transfer energy is conserved, the cost is a much longer transfer time.  相似文献   

13.
In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth \(L_{1}\) and \(L_{2}\)-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold’s approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth’s parking orbit of the spacecraft and the manifold.  相似文献   

14.
This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the \(L_1\) point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the \(L_1\) or \(L_2\) points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.  相似文献   

15.
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.  相似文献   

16.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

17.
Application of low thrust propulsion to interconnect ballistic trajectories on invariant manifolds associated with multiple circular restricted three body systems has been investigated. Sun-planet three body models have been coupled to compute the two ballistic trajectories, where electric propulsion is used to interconnect these trajectories as no direct intersection in the Poincarè sections exists. The ability of a low thrust to provide the energy change required to transit the spacecraft between two systems has been assessed for some Earth to Mars transfers. The approach followed consists in a planetary escape on the unstable manifold starting from a periodic orbit around one of the two collinear libration points near the secondary body. Following the planetary escape and the subsequent coasting phase, the electric thruster is activated and executes an ad-hoc thrusting phase. The complete transfer design, composed of the three discussed phases, and possible applications to Earth–Mars missions is developed where the results are outlined in this paper.  相似文献   

18.
The possibility of communicating with the far side of the Moon is essential for keeping a continuous radio link with lunar orbiting spacecraft, as well as with manned or unmanned surface facilities in locations characterized by poor coverage from Earth. If the exploration and the exploitation of the Moon must be sustainable in the medium/long term, we need to develop the capability to realize and service such facilities at an affordable cost. Minimizing the spacecraft mass and the number of launches is a driving parameter to this end. The aim of this study is to show how Space Manifold Dynamics can be profitably applied in order to launch three small spacecraft onboard the same launch vehicle and send them to different orbits around the Moon with no significant difference in the Delta-V budgets. Internal manifold transfers are considered to minimize also the transfer time. The approach used is the following: we used the linearized solution of the equations of motion in the Circular Restricted Three Body Problem to determine a first–guess state vector associated with the Weak Stability Boundary regions, either around the collinear Lagrangian point L1 or around the Moon. The resulting vector is then used as initial state in a numerical backward-integration sequence that outputs a trajectory on a manifold. The dynamical model used in the numerical integration is four-body and non-circular, i.e. the perturbations of the Sun and the lunar orbital eccentricity are accounted for. The trajectory found in this way is used as the principal segment of the lunar transfer. After separation, with minor maneuvers each satellite is injected into different orbits that lead to ballistic capture around the Moon. Finally, one or more circularization maneuvers are needed in order to achieve the final circular orbits. The whole mission profile, from launch to insertion into the final lunar orbits, is modeled numerically with the commercial software STK.  相似文献   

19.
Starting from the identification and classification of a family of fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), and using analytic continuation techniques, we find two unstable periodic orbits in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). The orbits found perform periodic Earth–Moon transfers with a period of approximately 29.5 days.  相似文献   

20.
Lambert problem solution in the hill model of motion   总被引:1,自引:0,他引:1  
The goal of this paper is obtaining a solution of the Lambert problem in the restricted three-body problem described by the Hill equations. This solution is based on the use of pre determinate reference orbits of different types giving the first guess and defining the sought-for transfer type. A mathematical procedure giving the Lambert problem solution is described. This procedure provides step-by-step transformation of the reference orbit to the sought-for transfer orbit. Numerical examples of the procedure application to the transfers in the Sun–Earth system are considered. These examples include transfer between two specified positions in a given time, a periodic orbit design, a halo orbit design, halo-to-halo transfers, LEO-to-halo transfer, analysis of a family of the halo-to-halo transfer orbits. The proposed method of the Lambert problem solution can be used for the two-point boundary value problem solution in any model of motion if a set of typical reference orbits can be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号