首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
南海西沙海槽地壳结构的海底地震仪探测与研究   总被引:9,自引:1,他引:8  
利用中德合作在南海西沙海槽首次获得的海底地震仪探测数据 ,通过震相分析和走时模拟 ,研究了该区的纵波速度模型和地壳结构特征。结果显示 ,新生代沉积层厚 1— 4km ,其下的地壳纵波速度从 5.5km·s- 1 向下逐渐增加到 6.8km·s- 1 ,下地壳未见有明显的高速层 ,地壳厚度在剖面两侧为 2 5km ,向中部逐渐减薄至 8km ,莫霍面在剖面中部上隆 ,其速度反差强烈 ,从地壳底部的 6.8km·s- 1 跳跃到上地幔顶部的 8.0km·s- 1 。这一地壳结构反映出新生代拉张裂谷的特征 ,海槽两侧地壳结构相似 ,南北呈对称分布 ,没有或很少下地壳底侵 ,与南海北部陆缘的东段有很大差别。  相似文献   

2.
南海北部海陆过渡带是一条深地震探测的空白带,其地壳结构研究不仪可以揭示华南沿海地区地震活动规律和构造活动特征,而且可以将以往在海上和陆上使用深地震探测所获得的地壳结构模型进行有效的衔接.鉴于南海北部海陆过渡带地壳结构的重要性,2004年我们在香港外海域进行了一次海陆地震联测实验.本文以此次实验中广东和香港地区固定地震台网以及担杆岛流动台所获得的数据为基础,对各台站接收到的Pg和PmP震相进行了近似横向均一的二维结构模拟,获得了各台站对应的地壳平均速度和PmP反射点处的莫霍面深度值.其结果显示研究区地壳平均速度普遍为6.2km·s-1左右,比全球地壳平均速度6.45km·s-1要低,这可能与普遍发育于华南沿海地带的中地壳低速层有关.研究区东边的SHW台所获得的地壳平均速度为6.7km·s-1左右,要明显高于全球地壳平均速度,它可能是由于局部异常结构所造成的,其与地幔岩浆的侵入作用可能存在一定联系.研究区莫霍面深度在26-35km左右,变化趋势较为明显,从北西向南东方向逐渐变浅,属于地壳减薄型结构,推测其可能与南海北部边缘的形成演化有密切联系.研究表明南海北部海陆过渡带是一个明显的转换地带,它的深部地壳结构特征应该与南海的扩张演化有密切联系,这些认识推进了华南地区和南海北部陆缘地壳结构和构造属性的深入研究.  相似文献   

3.
研究表明,南海北部边缘广泛存在壳内低速层,且往海盆方向逐渐尖灭消失。认识壳内低速层为何尖灭是研究南海形成演化不可或缺的环节之一。通过总结前人对华南沿海及南海北部地壳结构调查的成果,对比了南海北部与华南大陆壳内低速层的分布特征,并解释了区域地震剖面等资料,探讨了南海北部边缘壳内低速层的尖灭的原因,认为大型断裂带为壳内低速层提供热散失的渠道,使未彻底固化的早期熔融层冷却固化的过程加速,从而使低速层尖灭消失。研究对认识南海北部深部地壳结构、边缘海形成演化过程有重要意义。  相似文献   

4.
深入研究珠江口地区海陆过渡带壳内低速层的结构和构造特征对于理解板内地震的发震机理、孕震构造及该区域的地壳结构具有重要的地质地球物理意义。利用2015年珠江口区域海陆地震联测L2-ME测线上的19个地震台站(包括陆上台站14台, 海底地震仪5台)记录到的地震数据来探明该区域低速层的结构和构造特征。在常规震相的基础上, 加入了大量的滑行波震相(Ph)进行结构模型计算, Ph震相的增加使得地壳内部10~20km范围内的射线覆盖密度有了显著提高, 从而获得了L2-ME测线下方更为精确的地壳纵波速度结构模型。结果发现, 模型中测线下方13~18km深度范围内稳定连续展布的壳内低速层被清晰成像, 其内部速度稳定在5.7~6.0 km·s-1之间, 与上下层界面速度差分别为0.5km·s-1、0.4km·s-1, 低速特征明显。该低速层厚度由陆侧的3.5km左右降至海侧的1km, 呈现出向海侧逐渐减薄的趋势, 低速层底界面起伏变化较大且具有与莫霍面相似的起伏特征。  相似文献   

5.
长昌凹陷位于琼东南盆地深水区,向东通过西沙海槽与南海西北次海盆相通,其近东西向的展布形态明显异于深水区其他凹陷的NE-NEE向形态,为了弄清其地壳结构,从而更好地分析凹陷的结构和演化机制,这里根据深反射地震资料、VSP资料和最新重力资料对长昌凹陷的地壳结构进行了综合地球物理模拟.结果显示:长昌凹陷北侧地壳厚度为22~24 km,南侧地壳厚度约20~22 km,从两侧向长昌凹陷中央地壳厚度逐渐减薄,最薄处只有2.8 km;莫霍面深度与沉积基底呈镜像关系,沉积基底最深的地方莫霍面深度最浅,最浅深度距海平面13.8 km;凹陷中央东部存在一层厚约4 km的下地壳高速层,该层在地震剖面和层速度剖面上均可识别.  相似文献   

6.
南海北部陆缘地壳结构探测结果分析   总被引:29,自引:4,他引:29  
深部地震和重力资料反演揭示了南海北部陆缘地壳结构在总体上由北部的华南沿海(厚约30km)向南部的洋盆(5──8km)逐渐减薄。南海的近SN向拉张不仅造成南北方向地壳结构的巨大变化,也造成东西向的明显变化。在南海北部陆缘的西部,局部拉张产生了一系列裂谷构造。西沙海槽作为一条狭窄的陆内裂谷向西延伸,海槽南北两侧地壳厚度超过25km,海槽中部地壳减薄至不足10km。西端的莺歌海盆地地壳厚仅5km,缺少明显的壳内反射-折射。在珠江口盆地中部,地壳厚度在下陆坡明显减薄,地壳下部存在较薄的(3──4km)高速层(地震波速7.2──7.5km·s-1);在珠江口盆地东部,地壳底部存在约 10km厚、300km宽的高速层。在台湾地区,由于弧陆碰撞,曾经减薄的陆壳在碰撞带增厚,莫霍面深度超过30km。南海北部陆缘在裂谷拉张和海底扩张期间岩浆活动平静,表明南海北部陆缘为非火山型陆缘。  相似文献   

7.
南海西沙海槽地壳结构的海底地震仪探测与研究   总被引:26,自引:0,他引:26  
利用中德合作在南海西沙海槽首次获得的海底的地震仪探测数据,通过震相分析和走时模拟,研究了该区的纵波速度模型和地壳结构特征。结果显示,新生代沉积层厚1-4km,其下的地壳纵波速度从5.5km.s^-1向下逐渐增加到6.8km.s^-1,下地壳未见有明显的高速层地壳厚度在剖面两侧为25Km,向中部逐渐减薄至8km,莫霍面在剖面中部上隆,其速度反差强烈,从地壳底部的6.8km.s^-1跳跃到上地幔顶部的  相似文献   

8.
南海东北部海陆联测地震数据处理及初步结果   总被引:21,自引:7,他引:21  
为开展南海东北部海陆过渡带和滨海断裂带横向深部结构研究,利用陆上流动地震台记录与海上气枪放炮相结合的方法,首次在广东汕头沿海进行了海陆联合深地震探测。详细介绍了该次海陆联测地震数据处理的主要步骤与流程,并针对海陆联测地震数据和常用地震软件编写了3个格式转换程序。应用这3个程序和SAC、SU等地震软件得到了初步的数据处理结果。在南澳台和新塘台的单台地震记录剖面中可以清晰地识别出多种震相,得到许多有用的地震信息,证明海陆联测的野外工作和第1阶段的数据处理工作是成功的,为下一步地壳深部结构的研究打下了良好的基础。  相似文献   

9.
南海北部陆缘西部的地壳结构   总被引:10,自引:0,他引:10  
通过中美科学合作,在南海北部陆缘西部采集了一条地壳剖面,从阳江地区开始,经珠三坳陷、神弧-东沙隆起、西沙海槽至西沙-中沙台地.结果表明,珠三坳陷的地壳已减薄至23km,去掉新生代沉积,则只有15km厚.西沙海槽的地壳结构已具备裂谷特征,地壳强烈减薄,厚14.47km;下地壳有高速地壳层,层速度为7.1km/g,厚6.7km.说明在新生代,南海北部陆缘西部受过强烈拉张,地壳减薄;上地幔部分熔融物质沿强烈拉张处侵入到地壳底部,使其地表形成裂谷.在西沙海槽的南部和北部,地壳结构差异很大,推测这里可能是由两个古老地块沿西沙海槽缝合起来,新生代早期的张性事件,又将这条古缝合线拉开,形成新生代裂谷──西沙海槽.  相似文献   

10.
东海莫霍面起伏与地壳减薄特征初步分析   总被引:3,自引:0,他引:3  
收集、整理大量由地震剖面提供的沉积层厚度资料,得到东海沉积层等厚图。对完全布格重力异常进行沉积层重力效应改正后,得到剩余重力异常,利用地震资料揭示的莫霍面深度值来约束界面反演得到东海莫霍面埋深。结果表明,东海陆架盆地莫霍面深度在25~28 km之间平缓变化,地壳厚度为14~26 km,西厚东薄;冲绳海槽盆地莫霍面深度为16~26 km,地壳厚度为12~22 km,北厚南薄。东海陆架盆地东部与冲绳海槽盆地南部地壳减薄明显,拉张因子分别达到2.6和3。初步分析认为冲绳海槽地壳以过渡壳为主,并未形成洋壳。  相似文献   

11.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   

12.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

13.
This article reviews information recently available from existing marine and coastal mining for responses to environmental issues affecting marine mining at different depths. It is particularly but not exclusively concerned with those issues affecting seabed biodiversity impact and recovery. Much information has been gathered in the past 10 years from shallow mining operations for construction aggregate, diamonds, and gold, from coastal mines discharging tailings to shallow and deep water, and from experimental deep mining tests. The responses to issues identified are summarized in a series of eight tables intended to facilitate site-specific consideration. Since impacts can spread widely in the surface mixing layer SML, and can affect the biologically productive euphotic zone, the main issues considered arise from the depth of mining relative to the SML of the sea. Where mining is below the SML, the issue is whether it is environmentally better to bring the extraction products to the surface vessel for processing (and waste discharge), or to process the extraction products as much as possible on the seabed. Responses to the issues need to be sitespecific, and dependent on adequate preoperational environmental impact and recovery prediction. For deep tailings disposal from a surface vessel, there are four important environmental unknowns: (1) the possible growth of "marine snow" (bacterial flocs) utilizing the enormous quantities of fine tailings particles (hundreds or thousands of metric tons per day) as nuclei for growth, (2) the possibility that local keystone plankton and nekton species may migrate diurnally down to and beyond the depth of deep discharge and hence be subjected to tailings impact at depth, (3) the burrow-up capability of deep benthos and their ability to survive high rates of tailings deposition, and (4) the pattern and rate of dispersion of a tailings density current through the deep water column from discharge point to seabed. Actions to obtain relevant information in general and site-specifically are suggested.  相似文献   

14.
Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m -2 day -1 . Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

15.
海上大直径钢管桩打桩过程中,桩周土体受到强烈扰动而发生强度弱化,掌握桩周土体强度弱化规律对于准确预测打桩过程、保证工程安全具有重要意义。为研究土体强度弱化规律,开展了环剪试验模拟打桩对桩周土体的扰动,测试土体强度随剪切速率的变化规律,建立了描述土体强度弱化规律的拟合公式,引入到打桩分析软件中。研究结果表明:土体的强度折减程度不仅与土体本身的性质有关还受到土体的埋深和剪切速率的影响,埋深越深土体强度折减程度越低,剪切速率越高土体强度折减越高,在打桩分析中可采用这里推荐的线性折减方法来模拟不同深度处土体强度的折减规律。  相似文献   

16.
An acoustic inversion method using a wide-band signal and two near field receivers is proposed and applied to multiple layered seabed models including a manganese sediment. The inversion problem can be formulated into a probabilistic model comprised of signals, a forward model, and additive noise. The forward model simulates wide-band signals, such as chirp signals, and is chosen to be the source-waveletconvolution plane wave modeling method. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the possible numerical ranges for a priori uniform distribution is based. The genetic algorithm is applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L 2 norm of the difference between measured and modeled signals. Not only the marginal pdf but also its statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm.  相似文献   

17.
The advanced piston corer (APC) has been used by the Ocean Drilling Program since 1985 for recovering soft sediments from the ocean floor. The pullout force measured on extracting the core barrel from the sediment is shown to correlate with the average shear strength of the sediment core measured in the ship's laboratory. A simple rule of thumb is derived relating the shear strength of the sediment to the pullout force. Multiple APC holes at individual sites allow the consistency of the pullout measurements to be assessed. The effects of different operational procedures during APC coring are also explored. Although generally applicable, the correlation between pullout force and laboratory measurements of shear strength breaks down for some APC holes, possibly because of the disturbance of some sediment types during the APC coring process. A better understanding of the physical process of APC coring, and its effect on the properties of the sediment both inside and immediately outside the core barrel, would indicate what confidence can be put on the measurement of pullout force as a way of evaluating the in situ shear strength of deep sea sediments.  相似文献   

18.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号