首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Marine soft clay with a high salt concentration is widely distributed in coastal areas. In this study, cement-based composites consisting of cement, silica fume, plant ash and NaOH were used as a substitute for ordinary Portland cement, and the effect of salt (sodium chloride) on the strength development of clay was investigated by unconfined compressive strength (UCS) testing and scanning electron microscopy (SEM). With the addition of sodium chloride (NaCl), the amount of cementitious materials decreased, and the salt (sodium chloride) was considered to consume the cement-based composites. The consumption effect could be quantitatively evaluated by the consumption index of salt (CIS) and the clay-water/cement ratio hypothesis. The relationship between the CIS and curing period and an UCS prediction model of clay stabilized with cement-based composites with different salt contents and curing times were established. The CIS gradually decreased with increasing curing time and cement-based composites content. The accuracy of the prediction model was evaluated by a comparative analysis between the measured strengths and predicted strengths; the deviation was mostly within 10%. SEM analyses were employed to describe the changes in the microstructure of the specimens and the influencing mechanism of salt on clay stabilized with cement-based composites.  相似文献   

2.
为了研究循环载荷作用下扶强材初始损伤对其极限强度的影响,进行了14组扶强材的循环加载试验和分析。构造了考虑材料累积损伤完整、断筋和大变形的扶强材单元极限承载力计算公式,提出了相应循环载荷作用下损伤扶强材单元的端缩曲线表达式和船体梁极限强度计算的简化逐步破坏法。编制了循环载荷作用下船体梁损伤极限强度计算程序,进行了船体梁极限强度计算,并与有限元结果进行对比。研究结果表明:改进的损伤扶强材模型可较为准确地描述扶强材材料损伤的完整、断筋和大变形的极限承载力退化情况,扶强材腹板断裂的损伤相较初始大变形及材料累积损伤形式承载力下降程度更明显;所提出的循环载荷作用下损伤船体梁极限强度计算的简化逐步迭代方法,能定量地计算扶强材在不同类型损伤下的极限承载力退化程度,具有较高精度,方便易行,可应用于工程设计。  相似文献   

3.
Cellular and humoral immune parameters are often used as biomarkers to trace environmental and physiological stresses in marine bivalves. In this study, we compared various immune parameters of Manila clams (Ruditapes philippinarum) under normal conditions and under a high level of desiccation, using flow cytometry. The immune parameters analyzed included, total hemocyte count, hemocyte mortality, hemocyte DNA damage, reactive oxygen species (ROS) production, and phagocytosis activity. Total hemocyte count, hemocyte DNA damage, and hemocyte mortality were significantly elevated among clams under high desiccation stress, while phagocytosis activity and spontaneous ROS production were significantly lower compared to those parameters of the control clams (p<0.05). These data suggest that the immune parameters analyzed in this study well reflect the physiological status of clams.  相似文献   

4.
Abstract

This research develops a parameter defined as the equivalent void ratio, e?st, which is able to accurately describe the dependence of the mechanical properties of cementitious material-clay mixtures on the influencing parameters, i.e., the mixing proportion, curing time, and initial state of the mixture, for different types of cementitious materials based on the results of unconfined compression, oedometer, and triaxial tests. Besides Portland cement, cementitious materials, such as fly ash and rice husk ash, are considered supplementary cement with different levels of efficiency. This equivalent cementitious material concept is then adapted for parameter development in conjunction with the effective void ratio proposed from our previous study. The developed single parameter, e?st, can assess the mechanical properties of cementitious material-clay mixtures with different types of cementitious materials and under different test conditions.  相似文献   

5.
孙德成  方辉  刘勇 《海洋工程》2020,38(6):42-52
开孔沉箱孔洞周围存在以三轴循环应力为特征的复杂承载区,其中混凝土损伤速度远大于单轴应力条件,局部疲劳损伤快速累积使结构整体承载能力迅速下降。考虑迎浪面入射波浪与消浪室内反射波浪的循环作用,针对开孔区域复杂应力状态下的疲劳损伤问题,基于不可逆损伤力学发展的数值计算方法模拟开孔板疲劳过程,得到循环荷载作用下不同类型开孔板的损伤演化历程,并计算损伤后整体结构极限承载力大小,通过综合对比孔洞损伤发展规律和结构极限承载能力,建立了疲劳作用下开孔沉箱极限承载能力判断依据。现有规范依据设计使用年限、波浪条件、作用效应组合等确定材料与结构强度,但并未充分体现开孔结构的优势与承载特点,在此基础上文中补充了开孔结构的优化设计以及实际寿命判断。  相似文献   

6.
The St Lucia estuarine lake in South Africa forms part of a World Heritage Site and is an important local source of biodiversity. Like many estuarine systems worldwide, St Lucia has experienced significant anthropogenic impacts over the past century. Abstractions have decreased fresh water inflows from the lake catchments by about 20%. Furthermore the Mfolozi river, which previously shared a common inlet with St Lucia and contributed additional fresh water during droughts, was diverted from the system in 1952 because of its high silt loads. The separated St Lucia mouth was subsequently kept artificially open until the onset of a dry period in 2002 when the mouth was left to close naturally. These changes and the current drought have placed the system under severe stress with unprecedented hypersaline conditions coupled with desiccation of large portions of the lake. Long-term simulations of the water and salt balance were used to estimate the occurrence and persistence of water levels and salinities for different management scenarios. The risks of desiccation and hyper-salinity were assessed for each case. The results show that the configuration of the Mfolozi/St Lucia inlets plays a key role in the physicochemical environment of the system. Without the Mfolozi link desiccation (of about 50% of the lake area) would occur for 32% of the time for an average duration of 15 months. Artificially maintaining an open mouth would decrease the chance of desiccation but salinities would exceed 65 about 17% of the time. Restoring the Mfolozi link would reduce the occurrence of both desiccation and hypersaline conditions and a mostly open mouth state would occur naturally. Integrating these modeled scenarios with observed biological responses due to changes in salinity and water depth suggests that large long-term changes in the biological structure can be expected in the different management scenarios.  相似文献   

7.
In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These results may explain the distribution pattern of this species in natural habitats, where it is generally restricted to tide pools in the intertidal zone of wave-swept rocky shores which could provide shelter from desiccation stress during low tide.  相似文献   

8.
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.  相似文献   

9.
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.  相似文献   

10.
刘军  林皋  钟红 《中国海洋工程》2013,27(2):169-182
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.  相似文献   

11.
1 .IntroductionTheslopingbreakwateriswidelyusedintheprotectionofcoastalstructures ,withrubblemoundtoebermbuiltatthefootofthewave attackingslope .Thefunctionofarubblemoundtoestructureis ,inadditiontodecreasingthequantityofmainarmorstoneused ,toprovidestaticsupporttothemainarmorlayer,avoidingtherollingdownofmainarmorstonesandprotectingtheapronstonesfromero sion .TheweightoftoebermstonesisdecidedaccordingtotheCodeofBreakwaterDesignandBuildingformulatedbytheMinistryofCommunicationsofChina .When…  相似文献   

12.
It is inevitable that marine structures suffer from corrosion and extreme cyclic loading. In order to study the influence of corrosion damage and cumulative fatigue damage on mechanical properties of marine steel, high performance steel NV-D36 was analyzed under electrochemical corrosion and cyclic loading. It was found that corrosion damage can reduce the elastic modulus, yield strength, ultimate stress and ultimate strain of steel NV-D36. And it was also found that cumulative fatigue damage will increase the ultimate stress of steel NV-D36 and reduce the ultimate strain of steel NV-D36. The effect of double damage on mechanical properties of steel NV-D36 was coupled with these two kinds of damage. The Chaboche model parameters calibrated under incremental cyclic loading scheme can exactly describe the stiffness and peak stress of steel NV-D36.  相似文献   

13.
ZHU  Jin-song 《中国海洋工程》2003,17(4):617-630
The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm x 100 mm x 100 mm specimens of ordinary strength concrete are tested under constant- or variable-amplitude fatigue loading and lateral confinement pressure in two orthogonal directions. A fatigue equation is developed by modifying the classical Aas-Jakobsen S-N equation for taking into account the effect of the confined stress on fatigue strength of plain concrete. The results of variable-amplitude fatigue tests indicate that the linear damage theory proposed by Palmgren and Miner is unreasonable in the biaxial stress state. A nonlinear cumulative damage model that could model the effects of the magnitude and sequence of variable-amplitude fatigue loading and lateral confinement pressure is proposed on the basis of the evolution laws of the residual strains in the longitudinal direction during fatigue tests. The residual fatigue life predic  相似文献   

14.
The fluid-structure interaction under seismic excitation is very complicated, and thus the damage identification of the bridge in deep water is the key technique to ensure the safe service. Based on nonlinear Morison equation considering the added mass effect and the fluid-structure interaction effect, the effect of hydrodynamic pressure on the structure is analyzed. A series of underwater shaking table tests are conducted in the air and in water. The dynamic characteristics affected by hydrodynamic pressure are discussed and the distribution of hydrodynamic pressure is also analyzed. In addition, the damage of structure is distinguished through the natural frequency and the difference of modal curvature, and is then compared with the test results. The numerical simulation and test of this study indicate that the effect of hydrodynamic pressure on the structure should not be neglected. It is also found that the presence of the damage, the location of the damage and the degree of the severity can be judged through the variation of structure frequency and the difference of modal curvature.  相似文献   

15.
酸化也会产生某些不溶性物质堵塞孔喉,给储层带来新的损害,即产生酸敏反应。储层酸敏性分析可为储层酸化改造及酸液配方研究提供依据。南堡油田1号构造东一段34块岩心酸敏评价结果表明储层土酸酸敏程度为强—极强。酸敏流动评价实验结果与所用岩心的渗透率、黏土总含量、不同黏土矿物含量,测试流体的酸浓度等有关。渗透率高的岩心易发生酸敏损害,黏土含量高的岩心酸敏损害原因复杂。测试流体中HF酸浓度越高,酸敏损害程度越大。高浓度酸液对胶结物的过度溶失,破坏岩石结构,产生微粒,堵塞孔喉,造成渗透率的降低,是造成南堡油田1号构造东一段酸敏强的主要原因。酸敏地层采用合适的酸液浓度或体系,可以采取酸化达到增产目的。  相似文献   

16.
Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents.The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina interrnedia, and two brown algae Petaloniafascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G.interrnedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia,exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. interrnedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO2 in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.  相似文献   

17.
触地段(Touchdown zone, TDZ)是在役钢悬链线立管(Steel catenary riser, SCR)的关键部位,在复杂载荷作用下,极易形成损伤缺陷,其载荷寿命的评估是深海结构工程中的一个关键问题。本文以大型有限元软件ABAQUS为平台,运用损伤管道实体单元与土弹簧阻尼单元相互作用的模型模拟触地段损伤海底管道在复杂载荷作用下的动力响应,数值计算考虑了管-土相互作用过程中的材料非线性、几何非线性以及接触非线性。讨论了单一环向体积损伤位于触地段管道的不同位置时,触地段损伤管道在不同载荷作用下的动力特性及特征点的动力响应。结果表明,管道所受内外压力以及管道提升端的竖向位移载荷会影响结构的自振频率;体积损伤部位的动力响应较完好部位更剧烈;体积损伤的位置和动力载荷频率对管道动力放大系数的影响很大;当动力载荷的激励频率越接近结构基频时,损伤管道的动力响应及动力放大系数越大。  相似文献   

18.
干出状态下羊栖菜的光合作用特性   总被引:6,自引:1,他引:5  
生长于低潮带的海藻羊栖菜(Hizikia fusiformis)在低潮时常处于干出状态。羊栖菜在千出状态下可进行有效的光合CO2同化作用,虽然光合活竹比在海水状态时小。在于出状态下羊栖菜藻体发生脱水作用,在脱水15%以内时,光合活性没有显著变化,但随着进一步的脱水,光合活性急剧下降。在脱水率为38%时,光合活性下降至初始干出时的一半。现有大气中CO2浓度不能饱和羊栖菜在干出状态下的光合作用,H这种CO2限制随着藻体的严重脱水而加剧,其CO2羧化效率也随严重的脱水而急剧下降。减少脱水的因素(如海浪、藻体相互重叠等)以及大气CO2浓度升高有利于促进羊柄菜在干出状态下的光合作用。  相似文献   

19.
Block type quay walls are one of the most generally used type of gravity quay walls however seismic risks of this kind of structures have not already received the proper amount of attention. In this study, stability of block type quay wall which consists of two concrete blocks is investigated experimentally and numerically. 1 g shaking table tests are used for experimental study. Model scale is 1/10 and model is placed on rigid bed to ignore damage due to foundation deformation. Two different granular materials (Soil 1 and Soil 2) which have different nominal diameters are used as backfill materials to understand the effect of nominal diameters on structure's stability. During the experiments accelerations, pore pressures, soil pressures and displacements are measured for two blocks under different cycling loadings. Soil pressure test results are presented in non-fluctuating and fluctuating components to determine the distribution and application point of the fluctuating component on two blocks. By using experiment results, the friction coefficients between the rubble-block and block-block are determined and compared with recommended friction coefficients in standards. PLAXIS V8.2 software program is used for numerical study to determine the material properties.  相似文献   

20.
Vortex-induced vibration(VIV) for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering. In this paper, a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases. Firstly, the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows. Then, forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T* and combined ratio r. The combined flow cases are classified into three categories to investigate the effect of r on cylinder's dynamic response, and the effect of T* is described under long and short period cases. Finally, fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T*. The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号