首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用我国最新地球重力场模型 WDM94,给出了南极 (纬度范围为 - 60°~ - 90°)大地水准面高和平均空间重力异常。为了全面总结分析南极大地水准面特征 ,收集了国外最新地球重力场模型 OSU91 ( 360阶次 )和 JGMOSU( 360阶次 ) ,计算了相应的大地水准面高和平均重力异常。其结果分别与 WDM94的结果作了比较 ,WDM94与 OSU91和 JGMOSU的大地水准面高标准差分别为± 1 .90 m和± 2 .0 9m,平均空间重力异常标准差分别为± 8.97mgal和± 9.32 mgal  相似文献   

2.
Observations of gravity can be aliased by virtue of the logistics involved in collecting these data in the field. For instance, gravity measurements are often made in more accessible lowland areas where there are roads and tracks, thus omitting areas of higher relief in between. The gravimetric determination of the geoid requires mean terrain-corrected free-air anomalies; however, anomalies based only on the observations in lowland regions are not necessarily representative of the true mean value over the topography. A five-stage approach is taken that uses a digital elevation model, which provides a more accurate representation of the topography than the gravity observation elevations, to reduce the unrepresentative sampling in the gravity observations. When using this approach with the Australian digital elevation model, the terrain-corrected free-air anomalies generated from the Australian gravity data base change by between 77.075 and −84.335 mgal (−0.193 mgal mean and 2.687 mgal standard deviation). Subsequent gravimetric geoid computations are used to illustrate the effect of aliasing in the Australian gravity data upon the geoid. The difference between 'aliased' and 'non-aliased' gravimetric geoid solutions varies by between 0.732 and −1.816 m (−0.058 m mean and 0.122 m standard deviation). Based on these conceptual arguments and numerical results, it is recommended that supplementary digital elevation information be included during the estimation of mean gravity anomalies prior to the computation of a gravimetric geoid model.  相似文献   

3.
冰芯中MSA迁移假说的延伸和完善   总被引:1,自引:0,他引:1       下载免费PDF全文
MSA在冰芯深层的“迁移”现象的存在 ,关系到能否应用大气中 MSA季节特征进行极地冰芯断代 ,并以冰芯分析结果确定大气中生物硫化物含量的方法基础。本文展示各类最有代表性的冰雪 MSA剖面 ,对提出冰芯深层 MSA“迁移假说”的理论依据进行探讨 ,并根据最新资料 ,说明冰川中 MSA的“迁移”和重新分布 ,在表层粒雪和渗浸 -冻结冰层中同样可能发生。对“迁移假说”的延伸补充在于 ,粒雪中的 MSA迁移是在积雪中空气与外界贯通的“开放”条件下进行的 ,渗入雪层中的融水将 MSA溶出后 ,在晶粒间宏观向下输送 ,在阳离子集中的层位发生反应 ,生成盐类冰点的改变使之发生“冻结”,重新分布。而渗浸 -冻结冰层中的迁移机制可能和深层冰川冰中的情况接近 ,即在气体与外界隔绝条件下 ,主要在“封闭”的晶间脉状纹理中以“微观”形式进行。南极半岛 MSA迁移过程需要很长时间 ,而表层渗浸 -冻结冰层中 MSA迁移过程很快出现 ,说明冰中脉状纹理的加快形成、较高冰川温度和冰层中的较大含水量等因素会对 MSA“迁移”进程起促进作用。最后 ,对 MSA“迁移”情况下 ,如何进行有关冰芯 MSA计算进行了讨论 ,对设计实验验证并完善迁移理论提出了设想。  相似文献   

4.
Summary. A new set of 1×1° mean free-air anomalies in the Indian Ocean is determined on the basis of previously published free-air anomaly maps (Talwani & Kahle) and the most recent Lamont surface ship gravity measurements. The data are then used to compute a (total) 1×1° gravimetric Indian Ocean geoid. The computation is carried out by combining the Goddard Space Flight Center (GSFC) GEM-6 geoid and a difference geoid that corresponds to the differences between the set of 1×1° surface gravity values and the GEM-6 gravity anomalies. The difference geoid is highest over the Madagascar Ridge (+ 20 m) and lowest over the Timor Trough (-30 m). The total geoid is compared with GEOS-3 radar altimeter derived geoid profiles and geophysical implications are discussed.  相似文献   

5.
Summary A technique is presented for calculating geoid height anomalies over two-dimensional models of Earth structure. The method consists of convolving gravity anomalies over the structure with filters which take into account the finite size of the structure in the third dimension and the curvature of the Earth. Similar filters are also developed for a flat earth case. The method is applied to a sea-surface gravity profile crossing the Tonga-Kermadec trench and is found to give good agreement with a Geos-3 radar altimetry profile in the same region. The example demonstrates that introducing arbitrary offsets in computing gravity anomalies can result in spurious long-wavelength effects in the computed geoid. Comparison of the results obtained using flat earth and spherical earth filters suggests that the effects of the curvature of the Earth only become significant for wavelengths in the gravity field greater than about 1000 km.  相似文献   

6.
Viscous gravitational relaxation   总被引:2,自引:0,他引:2  
Summary This paper is concerned with a detailed examination of the response of Maxwell models of the planet to surface mass loads. Particular attention is devoted to an examination of the factors which determine the isostatic response since the understanding of this response is crucial in a number of different geodynamic problems. One particular example which we discuss in detail is concerned with the prediction of free air gravity anomalies produced by large-scale deglaciation events. Using the methods developed here we are able to provide the first direct assessment of the importance of initial isostatic disequilibrium on the observed relative sea-level variations and free air gravity anomalies forced by the melting of the Laurentide ice sheet. We are therefore able to estimate the extent to which such initial disequilibrium might influence the inference of mantle viscosity from isostatic adjustment data. Our calculations establish that free air gravity data, although they are sensitive to the degree of initial disequilibrium, provide an extremely high quality constraint upon the viscosity of the lower mantle.  相似文献   

7.
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceano-graphic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations, Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.  相似文献   

8.
The relationship between gravity and bathymetry in the Pacific Ocean   总被引:2,自引:0,他引:2  
Summary. Surface-ship and satellite derived data have been compiled in new free-air gravity anomaly, bathymetry and geoid anomaly maps of the Pacific Ocean basin and its margin. The maps are based on smoothed values of the gravity anomaly, bathymetry and geoid interpolated on to a 90 × 90 km grid. Each smoothed value was obtained by Gaussian filtering measurements along individual ship and subsatellite tracks. The resulting maps resolve features in the gravity, bathymetry and geoid with wavelengths that range from a few hundred to a few thousand kilometres. The smoothed values of bathymetry and geoid anomaly have been corrected for age. The resulting maps show the Pacific ocean basin is associated with a number of ENE–WSW-trending geoid anomaly highs with amplitudes of about ± 5 m and wavelengths of about 3000 km. The most prominent of these highs correlate with the Magellan seamounts–Marshall Gilbert Islands–Magellan rise and the Hess rise–Hawaiian ridge regions. The correlation between geoid anomaly and bathymetry cannot be explained by models of static compensation, but is consistent with a model in which the geoid anomaly and bathymetry are supported by some form of dynamic compensation. We suggest that the dynamic compensation, which characterizes oceanic lithosphere older than 80 Myr, is the result of mantle convection on scales that are smaller than the lithospheric plates themselves.  相似文献   

9.
Summary. An approximate analytical solution for flow in a mantle plume of constant radius, viscosity, and density contrast is obtained in cylindrical coordinates. the differential equations for vertical velocity of the mantle surrounding the plume and for topography are homologous to the equation for flexure of an elastic plate. Although the model is too simple to be fully applicable to the Earth, one can conclude that the vertical velocity in the mantle changes significantly away from plumes, that the viscosity of the plume is important for controlling flow rate, and that the long-wavelength geoid anomalies are sensitive to the viscosity of the surrounding mantle. the first induced upwelling away from a plume is quite weak and unlikely to control the spacing of plumes.  相似文献   

10.
Post-glacial rebound and transient lower mantle rheology   总被引:1,自引:0,他引:1  
Summary. Although post-glacial rebound data have been conventionally interpreted as being governed by the steady state component of the mantle viscosity spectrum, the radial profile of this parameter, which is then inferred by fitting a model to observations, is characterized by the fact that it exhibits rather slight variation with depth. This disagrees with expectations based upon microphysical models of the solid state creep process. It also disagrees with very recent inferences of the viscosity stratification based on isostatic geoid anomalies expected on the basis of the internal lateral heterogeneity of mantle density obtained from seismic tomographic analyses. The new calculations of the signatures of post-glacial rebound reported here show that these two types of information are easily reconciled if the previously inferred value of the lower mantle viscosity is interpreted as a transient value, as originally suggested by Weertman on the basis of qualitative considerations. In these new models considered here the steady state creep resistance of the lower mantle is not constrained at all by post-glacial rebound observations. It can be fixed only by an appeal to other geophysical data. Whether such models are actually required by the data should become clear in the very near future.  相似文献   

11.
Summary. The anomalous (gravitational) potential of the Earth, T , is split in two parts, T= T C + T M. Here T M is a harmonic function generated by known mass density anomalies and T C =T-T M. This function will also be a harmonic function, which therefore may be approximated using the method of collocation, based on known gravity anomalies or altimeter derived geoid undulations, for example. Gravity anomalies can then be predicted using the known linearized relationship between T and Δ g . This procedure may give a 40–50 per cent increase in the precision of the prediction results as compared to a procedure where mass density anomalies are not taken into account.  相似文献   

12.
Summary. The gravitational potential and field anomalies for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational potential gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity anomaly at a continental margin. The results are compared with observations.  相似文献   

13.
The ocean geoid can be inferred from the topography of the mean sea surface. Satellite altimeters transmit radar pulses and determine the return traveltime to measure sea-surface height. The ERS-1 altimeter stacks 51 consecutive radar reflections on board the satellite to a single waveform. Tracking the time shift of the waveform gives an estimate of the distance to the sea surface. We retrack the ERS-1 radar traveltimes using a model that is focused on the leading edge of the waveforms. While earlier methods regarded adjacent waveforms as independent statistical events, we invert a whole sequence of waveforms simultaneously for a spline geoid solution. Smoothness is controlled by spectral constraints on the spline coefficients. Our geoid solutions have an average spectral density equal to the expected power spectrum of the true geoid. The coherence of repeat track solutions indicates a spatial resolution of 31  km, as compared to 41  km resolution for the ERS-1 Ocean Product. While the resolution of the latter deteriorates to 47  km for wave heights above 2  m, our geoid solution maintains its resolution of 31  km for rough sea. Retracking altimeter waveform data and constraining the solution by a spectral model leads to a realistic geoid solution with significantly improved along-track resolution.  相似文献   

14.
During the last glacial cycles, global sea level dropped several times by about 120 m and large ice sheets covered North America, northern Europe and Antarctica during the glacial stages. The changes in the iceocean mass balance have displaced mantle material mainly via viscous flow, and the perturbation of the equilibrium figure of the Earth by glacial isostatic adjustment is still observable today in timedependent changes of gravitational and rotational observations. Contemporary iceocean mass balance from volume changes of polar ice caps also contributes to secular variations of the Earth's gravitational field.
In the near future, several satellite gravity missions will significantly improve the accuracy of the observed timedependent gravitational field. In view of the expected improvements in the observations, we predict glacially induced perturbations of the gravitational field, induced by Late Pleistocene and contemporary ice volume changes, for a variety of radial mantle viscosity profiles. We assess the degree of uncertainty for the glacially induced contributions to gravitational and rotational parameters, both in the spectral and the spatial domain.
Predictions of power spectra for the glacially induced freeair gravity and geoid anomalies are about one order of magnitude lower than the observed values, and uncertainties arising from different plausible viscosity profiles are around 0.150.4 mGal and 0.21.5 m, respectively. Uncertainties from different ice models are of secondary importance for the predicted power spectra. Predicted secular changes in geoid anomalies in formerly glaciated areas are mainly controlled by the viscosity profile and contemporary ice volume changes. We also show that the simple threelayer viscosity profiles currently employed for the majority of postglacial rebound studies represent a limited subset for model predictions of the timedependent gravitational field.  相似文献   

15.
西南地区冬季气候异常的时空变化特征及其影响因子   总被引:12,自引:0,他引:12  
蒋兴文  李跃清 《地理学报》2010,65(11):1325-1335
利用1961-2010 年的多种观测资料,对西南地区冬季气候异常的时空演变特征及其影响因子进行了分析。结果表明:西南地区冬季气温变化主要存在全区一致和东、西部反位相两种模态,这两种模态均存在显著的年代际变化。全区温度的一致变化与东亚冬季风的异常有关,东、西反位相的变化与西太平洋副热带高压和冷空气的异常活动有关。冬季降水异常主要表现为全区一致的变化特征。北半球环状模(NAM,AO) 和ENSO对西南地区气温没有显著的影响。当NAM偏强(弱) 时,西南地区降水偏多(少)。El Niño 年,西南地区降水一致偏多;La Niña 年,西南地区中部降水偏多,东、西部降水偏少。2010 年冬季西南地区的干旱更有可能是由NAM异常引起的,而不是El Niño。  相似文献   

16.
According to the theory of isostasy, the Earth has a tendency to deform its surface in order to reach an equilibrium state. The land-uplift phenomenon in the area of the Fennoscandian Shield is thought to be a process of this kind. The geoid, as an equipotential surface of the Earth's gravity field, contains information on how much the Earth's surface departs from the equilibrium state. In order to study the isostatic process through geoidal undulations, the structural effects of the crust on the geoid have to be investigated.
  The structure of the crust of the Fennoscandian Shield has been extensively explored by means of deep seismic sounding (DSS). The data obtained from DSS are used to construct a 3-D seismic-velocity structure model of the area's crust. The velocity model is converted to a 3-D density model using the empirical relationship that holds between seismic velocities and crustal mass densities. Structural effects are then estimated from the 3-D density model.
  The structural effects computed from the crustal model show that the mass deficiency of the crust in Fennoscandia has caused a geoidal depression twice as deep as that observed from the gravimetric geoid. It proves again that the crust has been isostatically compensated by the upper mantle. In other words, an anomalously high-density upper mantle must exist beneath Fennoscandia.  相似文献   

17.
徐绍铨 《极地研究》1989,1(4):57-64
经1985年12月~1987年3月,三年度夏测绘科学考察,在中国南极长城站地区建立了一套完整的、精确的测绘基准系统。它包括大地坐标系统、高程系统和重力参考系统。本文叙述了建立这些基准系统的方法和数学模型,并分析了测量精度。  相似文献   

18.
Summary. A total of 3708 1 × 1° free-air gravity anomaly averages have been used to construct a new 1 × 1° gravimetric geoid of the Northwest Pacific Ocean. The 1 × 1° averages are based on a compilation of 147000 surface ship and pendulum gravity measurements. The gravimetric geoid reveals information in the geoid of the Northwest Pacific not present in currently used satellite derived models. The RMS difference between the 1 × 1° geoid and satellite derived models is about ±6 m. Difference geoid undulations range from a maximum of +19 m over the Hawaiian ridge to a minimum of −31 m over the junction of the Kuril and Aleutian trenches. The Hawaiian swell is associated with a geoidal high of up to +15 m with wavelengths of about 2200 km and the topographic rises seaward of deep-sea trenches are associated with geoidal highs of up to 4m with wavelengths of about 220–900 km. The main difference between the gravimetric geoid and the satellite derived models occurs over the Pacific basin where discrepancies reach +10 m with wavelengths of 4000 km. The agreement between the gravi-metric geoid and Skylab-4 and Geos-3 altimeter data is close for wavelengths greater than about 300 km but poor for shorter wavelengths.  相似文献   

19.
An algorithm to predict the NDVI (Normalized Difference Vegetation Index) distribution over Mongolia, which is based on a stepwise multiple linear regression analysis, has been developed using global precipitation data obtained from satellites and global surface air temperature data obtained from the reanalysis data during the period 1998–2005. This algorithm can predict the NDVI value up to 1–3 months in advance for a grid with a spatial resolution of 0.25° × 0.25°.In order to validate the algorithm, the NDVI distribution was predicted for the period from May to November 2006 using 1 to 3-month prediction algorithms. The distributions of the predicted normalized anomalies agreed well with those of the observed normalized anomalies. It was found that these algorithms were effective for arid and semi-arid regions, despite its low accuracy for August and regions with high vegetation activity.  相似文献   

20.
The inversion of high-resolution geoid anomaly maps derived from satellite altimetry should allow one to retrieve the lithospheric elastic thickness, T e , and crustal density, c . Indeed, the bending of a lithospheric plate under the load of a seamount depends on both parameters, and the associated geoid anomaly is correspondingly dependent on the two parameters. The difference between the observed and modelled geoid signatures is estimated by a cost function, J , of the two variables, T e and c . We show that this cost function forms a valley structure along which many local minima appear, the global minimum of J corresponding to the true values of the lithospheric parameters. Classical gradient methods fail to find this global minimum because they converge to the first local minimum of J encountered, so that the final parameter estimate strongly depends on the starting pair of values ( T e ,   c ). We here implement a non-linear optimization algorithm to recover these two parameters from altimetry data. We demonstrate from the inversion of synthetic data that this approach ensures robust estimates of T e and c by activating two search phases alternately: a gradient phase to find a local minimum of J , and a tunnelling phase through high values of the cost function. The accuracy of the solution can be improved by a search in an iteratively restricted parameter subspace. Applying our non-linear inversion to the Great Meteor Seamount geoid data, we further show that the inverse problem is intrinsically ill-posed. As a consequence, minute geoid (or gravity) data errors can induce large changes in any recovery of lithospheric elastic thickness and crustal density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号