首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term data from 23 tide gauges were used to analyze the spectrum of mesoscale sea level variability of the Black Sea. The tides have sharp spectral peaks, and they are detected at diurnal and semidiurnal frequencies for all stations. A local wide spectral peak associated with inertial oscillations is located between the diurnal and semidiurnal tidal peaks. This peak is well known in the spectra of the current velocity variations of the Black Sea, but in the sea level spectrum it has been identified for the first time. At frequencies of >3 cpd, sea level spectra of the Black Sea have (1) wide maxima in the continuous spectrum, which correspond to the main eigenmodes of the sea with periods of 5.6, 4.8, 4.1, and 3.1 h, and (2) sharp peaks of radiational harmonics S3, S4, S5, and S6. The periods of seiches calculated in this study are close to the periods of eigenmodes of the Black Sea, obtained by the numerical modeling of other authors. The main factors influencing the formation of radiational tides in the Black Sea are presumably breezes and runoff from large rivers. The significant predominance of a harmonic with frequency of 5 cpd (S5) over other radiational harmonics is caused by the influence of an eigenmode, with a frequency of about 5 cpd. The proximity of the periods of these oscillations leads to resonant amplification and to a corresponding increase in amplitude of the radiational harmonic S5.  相似文献   

2.
The hydrological regime of the Black Sea in the conditions of permanent alternation of atmospheric circulation processes was investigated on the basis of a baroclinic prognostic model of the sea dynamics. In the model, variations in the wind action were expressed as permanent alternation of 24 wind types characteristic of the Black Sea basin throughout the year. Thermohaline impact of the atmosphere was taken into account by specifying the annual trends of temperature and salinity at the sea surface, which was established from multiyear means of these parameters. The problem was solved numerically on the basis of the method of two-cycle splitting with the use of the grid with a horizontal spacing of 5 km. Results of the numerical experiment showed that, under the influence of a strong nonstationarity of atmospheric processes, the water circulation in the upper layer of the Black Sea changes qualitatively and quantitatively. The upper 20–30-m layer of the sea is particularly sensitive to atmospheric circulation variations. For any character of atmospheric circulation, the Black Sea circulation below this layer is nearly always cyclonic with internal cyclonic rotations.  相似文献   

3.
The long-term evolution of the Black Sea dynamics (1980–2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.  相似文献   

4.
Long-term hourly data from 12 tide gauge stations were used to examine the character of tidal oscillations in the Caspian Sea. Diurnal and semidiurnal tidal peaks are well-defined in sea level spectra in the Middle and South Caspian basins. High-resolution spectral analysis revealed that the diurnal sea level oscillations in the Middle Caspian Basin have a gravitational origin, while those in the South Caspian Basin are mainly caused by radiational effects: the amplitude of diurnal radiational harmonic S1 is much higher than those of gravitational harmonics О1, P1, and K1. In the North Caspian Basin, there are no gravitational tides and only weak radiational tides are observed. A semidiurnal type of tide is predominant in the Middle and South Caspian basins. Harmonic analysis of the tides for individual annual series with subsequent vector averaging over the entire observational period was applied to estimate the mean amplitudes and phases of major tidal constituents. The amplitude of the M2 harmonic reaches 5.4 cm in the South Caspian Basin (at Aladga). A maximum tidal range of 21 cm was found at the Aladga station in the southeastern part of the Caspian Sea, whereas the tidal range in the western part of the South Caspian Basin varies from 5 to 10 cm.  相似文献   

5.
The characteristics of currents and tidal currents in the Andaman Sea(AS) are studied during the second half of2016 using observed data from a moored acoustic Doppler current profiler(ADCP) deployed at 8.6°N, 95.6°E.During the observation period, the mean flow is 5–10 cm/s and largely southward. The root mean square and kinetic energies of the low and high frequency flows, which are divided by a cutoff period of 5 d, are at the same level, indicating their identical importance to the total current. A power spectrum analysis shows that intraseasonal oscillations, a tidal-related semilunar month signal, a semidiurnal tidal signal and periods of 3–4 d are prominent. The barocliny of an eddy kinetic energy is stronger than the mean kinetic energy, both of which are the strongest on the bottom and the weakest at 70 m depth. Residual currents are largely southward(northward) during the summer(winter) monsoon season. Two striking peaks of the southward flow cause the 80 d period of meridional currents. The first peak is part of a large-scale circulation, which enters the AS through the northern channel and exits through the southern channel, and the second peak is part of a local vortex. The 40 d oscillation of the zonal current is forced by geostrophic variations attributed to local and equatorial remote forcing. The tidal current is dominated by semidiurnal constituents, and among these, M2 and N2 are the top two largest major axes. Moreover, astronomical tidal constituents MM and MSF are also significant. Diurnal constituents are weak and shallow water tides are ignorable. The aims are to introduce the new current data observed in the AS and to provide initial insights for the tidal and residual currents in the Andaman Sea.  相似文献   

6.
In the paper two types of numerical models – a lumped-parameter model and a high-resolution two-dimensional hydrodynamic model – are used to analyse the response of a system of partially-connected tidal basins to inhomogeneous open sea forcing. The equations of the lumped-parameter model, suitable for an arbitrary number of basins with sloping walls, are formulated based on one-dimensional continuity and momentum equations. Numerical solutions to the equations are thoroughly examined, showing the influence of inhomogeneous open sea forcing and of geometrical parameters of the basins on the tidal range and the water transport through the system, with particular emphasis given to inter-basin water exchange and cumulative water transport through basins boundaries. The results of the lumped-parameter model simulations for the tidal basins of the German Wadden Sea are successfully compared with the results of calculations with the two-dimensional hydrodynamic model, which is used to investigate in more detail circulation patterns and the influence of specific local features of inlet bathymetry on the hydrodynamic processes in the study area. The influence of wind on the basins response is discussed as well.  相似文献   

7.
We present a numerical model of Black Sea circulation based on primitive equations with improved spatial resolution in the coastal zone. The model equations are formulated in a two-pole orthogonal coordinate system with arbitrary locations of the poles and a vertical σ coordinate. Increased horizontal resolution is gained by displacing the pole into the vicinity of the separated subdomain. The problem is solved over a grid with a variable step. The northern coordinate pole is displaced to the vicinity of Gelendzhik; the grid step varies from 150 m in the coastal zone to 4.6 km in the main basin. We simulated the fields of currents, sea level, temperature, and salinity under the given atmospheric forcing in 2007. The model is capable of reproducing the large-scale Black Sea circulation and submesoscale variations in the coastal currents.  相似文献   

8.
《Oceanologica Acta》1998,21(3):393-417
Available climatic and atmospheric analysis data have been used to prepare forcing functions for the Black Sea numerical model, based on the Bryan-Semtner-Cox Modular Ocean Model and including parameterizations for the atmosphere-ocean exchange, inflow through the strait of Bosphorus and the Mediterranean plume. Atmospheric data from different sources are compared and the drawbacks of some of them illustrated. A new wind stress data set, based on ship observations, is prepared. Compared to the existing wind stress estimates, the present ones use additional data and more accurate parameterization of the boundary layer physics. The intercomparison between forcing data sets is focused on the heat flux and freshwater flux at the sea surface.The model simulates adequately vertical stratification, seasonal variability and horizontal patterns. Five data sets for heat flux, freshwater flux and wind stress are used in different combinations to study the model response. The large differences between the simulations, forced by different wind stress and identical thermohaline forcing, justify the computation of the new wind stress. Though the forcing data used are perhaps close to the best available at the moment for the Black Sea, the model simulations range in large intervals and some of them are very poor. The model responses to forcing functions of different origin give rough estimates on the possible errors in present-day simulations. Some inconsistencies give clear indications that further verifications, improvements of the forcing functions, and intercomparisons between the responses simulated by the ocean circulation models are needed.  相似文献   

9.
《Oceanologica Acta》1998,21(2):131-143
The eastern Atlantic barotropic dynamics (in a region spanning from 20° N to 48° N and 34° W to 0°) are studied through numerical modelling and in situ measurements. The main source of data is the tidal gauge network REDMAR, managed by Clima Marítimo (Puertos del Estado). The numerical model employed is the HAMSOM, developed both by the Institut für Meereskunde (Hamburg University) and Clima Marítimo.In this paper, tidal and storm surge dynamics are studied for the region, focusing particularly on the nonlinear transfer of energy between the different forcings.The results of tidal simulations show good agreement between semidiurnal harmonic components and the values obtained from the tidal gauges (both coastal and pelagic) and current metres. The nonlinear transfers of energy from semidiurnal to higher order harmonics, such as M4 and M6, were mapped. Those transfers were found to be important in only two areas: The French continental shelf in the Bay of Biscay and the widest part of the African shelf, south of Cabo Bojador. The modelled diurnal constituents show larger relative differences with measurements than semidiurnal harmonics, especially in data concerning the phase.A method to isolate the nonlinear transfers of energy between tidal and atmospheric forcing during a storm surge was developed. These transfers were found to be significant in the same areas where tidal nonlinear activity was present. The effect of short period wind generated waves on sea surface elevation was also investigated. The magnitude of the spatial derivatives of radiation stress was compared with wind-induced stress. As a result of this comparison, we found the inclusion of a forcing term that depends on radiation stress in ocean model simulations at this scale and resolution to be not essential. The effect of computing wind-induced stresses, with a formulation that explicitly depends on sea state, was also explored by means of a coupled run of the HAMSOM and the spectral wave model WAM for a storm surge event in the Spanish coast. This formulation was not found to be an improvement over a classical parameterisation which only depends on wind fields.  相似文献   

10.
The Black Sea dynamics for two decades (1993–2012) is analyzed. The study is carried out in numerical simulation with the use of a circulation model and assimilation of satellite measurements of free surface elevations and sea-surface temperatures (SSTs). The Black Sea circulation model has a spatial resolution of 4.8 km and 35 vertical levels, which thicken toward the surface. Arrays of ERA-Interim data are used for simulating the atmospheric forcing. A set of 3D arrays of the Black Sea hydrophysical fields is calculated on a regular grid with a time resolution of 24 h. The results are analyzed and compared with available contact measurements of temperature and salinity. This comparison shows a quite good quality of the resulted hydrophysical fields of the Black Sea.  相似文献   

11.
The paper discusses the results of numerical experiments on response of the Black Sea to the ‘real’ (mean monthly) atmospheric forcing. A new version of the multi-layer quasi-isopycnic model is applied which does not use the rigid-lid approximation and allows for a salt flux through the sea surface. Ways of obtaining quantitative agreement between the calculated data due only to the external forcing, without invokingin situ temperature/salinity observations are suggested. Translated by Vladimir A. Puchkin.  相似文献   

12.
Analyses of sea level and current-meter data using digital filters and a variety of statistical methods show a variety of phenomena related to non-local coastal forcing and local tidal forcing in the northern reach of San Francisco Bay, a partially mixed estuary. Low-frequency variations in sea level are dominated by non-local variations in coastal sea level and also show a smaller influence from tidally induced fortnightly sea level variations. Low-frequency currents demonstrate a gravitational circulation which is modified by changes in tidal-current speed over the spring-neap tidal cycle. Transients in gravitational circulation induce internal oscillations with periods of two to four days.  相似文献   

13.
孟庆军  李培良 《海洋与湖沼》2015,46(6):1241-1254
黄海是典型的强潮驱动的陆架浅海。为了研究黄海对台风的响应特点,本文利用区域海洋模式(Regional Ocean Modeling Systems,ROMS)分别模拟了在有潮和无潮作用下黄海对台风"布拉万"的响应过程。结果表明,不管潮存在与否,"布拉万"经过黄海后都引起了海表面降温和流速的近惯性振荡响应,这种响应主要分布于黄海中部较深区域,带通滤波提取的近惯性流速具有垂向第一模态特征。同时,研究发现强背景潮流能显著地影响黄海对"布拉万"的响应过程。主要结论如下:一方面,由于潮的存在,近岸垂向混合均匀的较暖水体与远岸较冷水体之间会形成潮混合温度锋面,"布拉万"过后,暖水发生了明显的离岸扩张,尽管路径右侧的混合层降温更显著,但是左侧即黄海西岸的暖水扩张更明显;另一方面,潮的存在减弱了布拉万产生的近惯性振荡响应,半日潮流在黄海仍然占据主导地位。在混合层中潮流的作用减弱了"布拉万"产生的近惯性能量,但也使其更易穿过跃层传入黄海内部。  相似文献   

14.
A numerical technique is presented for simulating the hydrophysical fields of the Black Sea on a variable-step grid with refinement in the area of IO RAS polygon. Model primitive equations are written in spherical coordinates with an arbitrary arrangement of poles. In order to increase the horizontal resolution of the coastal zone in the area of the IO RAS polygon in the northeastern part of the sea near Gelendzhik, one of the poles is placed at a land point (38.35° E, 44.75° N). The model horizontal resolution varies from 150 m in the area of the IO RAS polygon to 4.6 km in the southwestern part of the Black Sea. The numerical technique makes it possible to simulate a large-scale structure of Black Sea circulation as well as the meso- and submesoscale dynamics of the coastal zone. In order to compute the atmospheric forcing, the results of the regional climate model WRF with a resolution of about 10 km in space and 1 h in time are used. In order to demonstrate the technique, Black Sea hydrophysical fields for 2011–2012 and a passive tracer transport representing self-cleaning of Gelendzhik Bay in July 2012 are simulated.  相似文献   

15.
Luni-solar tides affect Earth's rotation in a variety of ways. We give an overview of the physics and focus on the excitation of Earth rotational variations by ocean tides under the conservation of angular momentum. Various models for diurnal and semidiurnal tidal height and tidal current fields have been derived, following a legacy of a number of theoretical tide models, from the Topex/Poseidon (T/P) ocean altimetry data. We review the oceanic tidal angular momenta (OTAM) predicted by these T/P models for the eight major tides (Q1, O1, P1, K1, N2, M2, S2, K2), and their excitations on both Earth's rotational speed variation (in terms of length-of-day or UT1) and polar motion (prograde diurnal/semidiurnal components and retrograde semidiurnal components). These small, high-frequency effects have been unambiguously observed in recent years by precise Earth rotation measurements via space geodetic techniques. Here we review the comparison of the very-long-baseline-interferometry (VLBI) data with the T/P OTAM predictions. The agreement is good with discrepancies typically within 1 – 2 microseconds for UT1 and 10 – 30 microarcseconds for polar motion. The eight tides collectively explain the majority of subdaily Earth rotation variance during the intensive VLBI campaign Cont94. This establishes the dominant role of OTAM in exciting the diurnal/semidiurnal polar motion and paves the way for detailed studies of short-period non-OTAM excitations, such as atmospheric and oceanic angular momentum variations, earthquakes, the atmospheric thermal tides, Earth librations, and the response of the mantle lateral inhomogeneities to tidal forcing. These studies await further improvements in tide models and Earth rotation measurements.  相似文献   

16.
Semidiurnal tides, and especially the lunar tide M2, are dominant dynamics in the Bay of Biscay. Strong tidal currents are associated with the presence of a significant continental slope. By combining Newton's gravitation laws and Euler's equations, Laplace's equations contain the astronomical forcing responsible for the observed semidiurnal tides. In shallow waters, this direct forcing is often neglected. We study here its influence on the tidal dynamics over the continental slope through the development of a simple model describing the barotropic semidiurnal dynamics on a transect perpendicular to the slope. This new model results from the combination of two different models, i.e. the one developed by Rosenfeld and Beardsley (1987), which takes into account the tide-generating force, and that of Battisti and Clarke (1982), which neglects it. A first model is developed by neglecting the direct astronomical forcing in equations: it consists in solving a second-order homogeneous propagation equation for the barotropic semidiurnal tide and needs only coastal conditions as well as the knowledge of the along-slope wave number of the solution. For a mean slope typical of the South Brittany area, this non-forced model provides results in accordance with those of Battisti and Clarke and Le Cann (1990): in particular, in the upper part of the slope, it shows a polarization inversion of tidal ellipses characteristic of the tidal dynamics observed in this area. Then, the direct astronomical forcing is kept in equations. The simple model developed without this forcing is fitted in order to solve the resulting forced propagation equation for the barotropic tide. The solution of this second model is the sum of a forced wave responding to the direct astronomical forcing and of a free wave generated at the coastal boundary. Under the same boundary conditions, the results obtained with the influence of the tide-generating force are then compared with those obtained without it. This comparison allows one to apprehend the importance of the direct astronomical forcing on tidal dynamics across the slope: in particular, the main difference appears in deep waters where this forcing induces a phase-lag between the plain and the shelf for the sea-surface slope.  相似文献   

17.
The formation of the fields of surface winds over the Black Sea occurs under the action of numerous physical factors. One of the most important factors is the monsoon mechanism connected with the seasonal variations of buoyancy contrasts over the sea and surrounding land. To separate the effects caused by this mechanism, we performed and described the numerical experiments aimed at the evaluation of the sensitivity of the regional model of atmospheric circulation to the variations of land–sea temperature contrasts. It is shown that the influence of these effects is restricted to the lower part of the atmosphere. The presented estimates of the climatic fields of disturbances enable us to describe the monsoon mechanism specifying the seasonal variability of the field of vorticity of the wind velocities and, as a consequence, the seasonal variability of the large-scale circulation of waters in the Black Sea.  相似文献   

18.
Data from field observations and numerical model simulations are used to understand and quantify the pathways by which passive tracers penetrate into the Black Sea intermediate and deep layers. Chlorofluorocarbon (CFC) concentrations measured during the1988 R.V. Knorr cruise show strong decrease with increasing density in the Black Sea and illustrate the very slow rate of ventilation of deep water in this basin. We develop a 3D numerical model based on the Modular Ocean Model (MOM), and calibrate it in a way to produce consistent simulations of observed temperature, salinity and CFCs. One important feature is the implementation of a special parameterization for convection, which is an alternative of the convective adjustment in MOM and handles the penetration of the Bosporus plume into the halocline. The model forcing includes interannually variable wind, heat and water fluxes constructed from Comprehensive Ocean–Atmosphere Data Set and ECMWF atmospheric analysis data and river runoff data. The analysis of observations and simulated data are focused on correlations between thermohaline and tracer fields, dynamic control of ventilation, and the relative contributions of sources at the sea surface and outflow from the Bosporus Strait in the formation of intermediate and deep waters. A simple theory is developed which incorporates the outflow from the strait along with the vertical circulation (vertical turbulent mixing and Ekman upwelling) and reveals their mutual adjustment. The analyses of simulated and observed CFCs demonstrate that most of the CFC penetrating the deep layers has its source at the sea surface within the Black Sea rather than from the Marmara Sea via the Bosporus undercurrent. Under present-day conditions, the surface CFC signals have reached only the upper halocline. Intrusions below 600 m are not simulated. The major pathways of penetration of CFCs are associated with cold-water mass formation sites, Bosporus effluent, as well as with the diapycnal mixing in the area of Rim Current. Future CFC sampling strategies coherent with the unique conditions in the Black Sea are discussed.  相似文献   

19.
《Oceanologica Acta》2003,26(5-6):597-607
A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M2, S2, K1 and O1, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.  相似文献   

20.
应用MIKE数值模拟软件,采用无结构三角形网格,建立一套计算区域包括整个渤海、黄海、东海以及东海大陆架和琉球群岛的高分辨率数值模型,考虑了实际水深和岸线,外海开边界采用西北太平洋大模型结果的潮位提供,模拟了东中国海潮波的波动过程,对潮波垂直运动过程进行调和分析,得到了渤海、黄海、东海的M2,S2,K1,O1以及N2,K2,P1,Q1八个主要分潮的传播和分布特征。利用中国沿海14个潮位站的调和常数对模型结果进行了验证,验证结果显示模型较为准确可靠。研究结果表明:4个主要半日潮(全日潮)在渤、黄、东海的传播情形基本相似,即潮波在渤海、黄海、东海沿岸的传播性质上类似沿岸开尔文波的传播形态,并且成功再现了计算海域的4个半日分潮无潮点和2个全日分潮无潮点。全日潮振幅各无潮点附近振幅最小,而海湾的波腹区振幅最大,东海潮差呈现近岸方向振幅大、离岸方向振幅小,浙闽沿海振幅也较大,黄海振幅相对较小,渤海振幅在辽东湾和渤海湾顶最大,两个无潮点周边振幅较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号