首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely recognised that remote sensing can support flood monitoring, modelling and management. In particular, satellites carrying Synthetic Aperture Radar (SAR) sensors are valuable as radar wavelengths can penetrate cloud cover and are insensitive to daylight. However, given the strong inverse relationship between spatial resolution and revisit time, monitoring floods from space in near real time is currently only possible through low resolution (about 100 m pixel size) SAR imagery. For instance, ENVISAT-ASAR (Advanced Synthetic Aperture Radar) in WSM (wide swath mode) revisit times are of the order of 3 days and the data can be obtained within 24 h at no (or low) cost. Hence, this type of space-borne data can be used for monitoring major floods on medium-to-large rivers. This paper aims to discuss the potential for, and uncertainties of, coarse resolution SAR imagery to monitor floods and support hydraulic modelling. The paper first describes the potential of globally and freely available space-borne data to support flood inundation modelling in near real time. Then, the uncertainty of SAR-derived flood extent maps is discussed and the need to move from deterministic binary maps (wet/dry) of flood extent to uncertain flood inundation maps is highlighted.  相似文献   

2.
Mapping of groundwater‐dependent ecosystems (GDEs) relies largely on assumption‐laden evaporation models, and few global, direct, and real‐time monitoring techniques exist. We propose a new synthetic aperture radar imagery‐derived index, SARGDE, to identify and monitor these ecosystems across Australia. The index captures vegetation reliance on groundwater during dry periods by estimating the relative stability of foliage and branch structure from the vertical/horizontal cross‐polarized band and InSAR coherence. SARGDE is tested over two contrasting study sites in Australia. To build and verify the index, a total of 90 Sentinel‐1 interferometric wide images are processed and stacked in two data‐cubes. GDE response to the SAR signal is explored using a non‐linear dimension reduction algorithm. Relevant statistical parameters are derived from data‐cubes and combined to form the index. As the index relies on a 1‐year time series of globally, freely available, and cloud‐insensitive SAR imagery, SARGDE offers unprecedented capabilities for large‐scale, annual monitoring of GDEs. Such monitoring will aid reconciliation of human and ecosystem groundwater needs by acting as a systematic monitoring tool, helping policy makers to assure ecosystem sustainability where impacts related to mining, agriculture, or climate change may occur.  相似文献   

3.
Plinian plumes erupt with a bulk density greater than that of air, and depend upon air entrainment during their gas-thrust phase to become buoyant; if entrainment is insufficient, the column collapses into a potentially deadly pyroclastic flow. This study shows that strombolian ash plumes can be erupted in an initially buoyant state due to their extremely high initial gas content, and in such cases are thus impervious to column collapse. The high gas content is a consequence of decoupled gas rise in the conduit, in which particles are ultimately incidental. The relations between conduit gas flow, eruption style and plume density are explored here for strombolian scenarios and contrasted with conventional wisdom derived from plinian eruptions. Considering the inherent relation between gas content and initial plume density together with detailed measurements of plume velocities can help unravel ambiguities surrounding conduit processes, eruption styles and hazards at poorly understood volcanoes. Analysis of plume dynamics at Santiaguito volcano, Guatemala adds further support for a model involving decoupled gas rise in the conduit.  相似文献   

4.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.  相似文献   

5.
L. Liu 《Pure and Applied Geophysics》2001,158(9-10):1583-1611
— This paper reviews some remarkable characteristics of earthquakes in a Stable Continental Region (SCR) of the South China Block (SCB). The kernel of the SCB is the Yangtze platform solidified in late Proterozoic time, with continental growth to the southeast by a series of fold belts in Paleozoic time. The facts that the deviatoric stress is low, the orientations of the major tectonic features in the SCB are substantially normal to the maximum horizontal principal stress, and a relatively uniform crust, seem to be the major reasons for lack of significant seismicity in most regions of the SCB. Earthquakes in this region are mainly associated with three seismic zones: (1) the Southeast China Coast seismic zone related to Guangdong-Fujian coastal folding belt (associated with Eurasia-Philippine Sea plate collision); (2) the Southern Yellow Sea seismic zone associated with continental shelf rifts and basins; and (3) the Downstream Yangtze River seismic zone spatially coinciding with Tertiary rifts and basin development. All three seismic zones are close to one or two major economic and population centers in the SCB so that they pose significant seismic hazards. Earthquake focal mechanisms in the SCB are consistent with strike-slip to normal faulting stress regimes. Because of the global and national economic significance of the SCB and its dense population, the seismic hazard of the region is of outstanding importance. Comparing the SCB with another less developed region, a pending earthquake with the same size and tectonic setting would cause substantially more severe social and economic losses in the SCB. This paper also compiles an inventory of historic moderate to great earthquakes in the SCB; most of the data are not widely available in English literature.  相似文献   

6.
In the upwelling area along the Namibian coast of SW-Africa sulphur discolorations were investigated to study the impact of hydrogen sulphide on the ecosystem using satellite imagery. The formation of colloidal sulphur in the upper water layer results from the oxidation of hydrogen sulphide. The occurrence of sulphur plumes as well as their temporal and spatial development was investigated in relation to the driving meteorological and oceanographic conditions. Because of the sporadic occurrence of sulphur events and the limited number of ship-borne investigations in that area remote sensing of ocean colour is the only method to follow these phenomena continuously and synoptically. In the past the sulphur plumes were studied by true colour images derived from ocean colour satellite data like sea-viewing wide field of view sensor or moderate resolution imaging spectroradiometer and identified by their typical milky turquoise discoloration.  相似文献   

7.
Bent-over buoyant jets distorted by a crosscurrent develop a vortex pair structure and can bifurcate to produce two distinct lobes which diverge from one another downwind. The region downwind of the source between the lobes has relatively low proportions of discharged fluid. Factors invoked by previous workers to cause or enhance bifurcation include buoyancy, release of latent heat at the plume edge by evaporating water droplets, geometry and orientation of the source, and the encounter with a density interface on the rising path of the plume. We suggest that the pressure distribution around the vortex pair of a rising plume may initially trigger bifurcation. We also report new experimental observations confirming that bifurcation becomes stronger for stronger bent-over plumes, identifying that bifurcation can also occur for straight-edged plumes but gradually disappears for stronger plumes which form a gravity current at their final level and spread for a significant distance against the current. Observations from satellites and the ground are reviewed and confirm that volcanic plumes can show bifurcation and a large range of bifurcation angles. Many of the bifurcating plumes spread out at the tropopause level and suggest the tropopause may act on the plumes as a density interface enhancing bifurcation. Even for quite moderate bifurcation angles, the two plume lobes become rapidly separated downwind by distances of tens of kilometers. Such bifurcating plumes drifting apart can only result in bilobate tephra fall deposits. The tephra fall deposit from the 16 km elevation, SE spreading, bifurcating volcanic plume erupted on 15 May 1981 from Mt Pagan was sampled by previous workers and clearly displayed bilobate characteristics. Examples of bilobate tephra fall deposits are reviewed and their origin briefly discussed. Bilobate deposits are common and may result from many causes. Plume bifurcation should be considered one of the possible mechanisms which can account for come examples of bilobate tephra fall deposits.  相似文献   

8.
Multi-temporal synthetic aperture radar (SAR) imagery from the European Remote Sensing Satellite (ERS-1) was evaluated for monitoring soil moisture at the Romney Marsh test site as part of the UK SAR Calibration and Crop Backscatter Experiment. A total of 18 C-band (5.3 GHz) ERS-1 SAR images were acquired during the three day orbit and co-registered. Accurate calibration of the backscatter measurements was achieved using calibration constants derived from an analysis of corner reflector target responses. Mean backscatter measurements were recorded for each field and compared with field data on soil moisture, surface roughness and rainfall patterns. A comparison of daily and hourly rainfall and soil moisture measurements with backscatter for different cover types showed that the observed trends in backscatter are dominated by moisture effects. A high positive correlation between volumetric soil moisture in the range 10–40% was observed for bare soil fields. A much weaker positive relationship between soil moisture and backscatter was observed for grassland fields.  相似文献   

9.
 Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around 920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated. Received: 11 January 1996 / Accepted: 7 October 1996  相似文献   

10.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   

11.
The process of multiple self-nucleation and ascent of mantle plumes is studied in the numerical models of thermal convection. The plumes are observed even in the simplest isoviscous models of thermal convection that leave aside the more complex rheology of the material, thermochemical effects, phase transformations, etc., which, although controlling the features of plumes, are not necessary for their formation. The origin of plumes is mainly due to the instability of the mantle flows at highly intense (low-viscous) thermal convection. At high viscosity, convective flows form regular cells. As viscosity decreases, the ascending and descending flows become narrower and unsteady. At a further decrease in viscosity, the ascending plumes assume a mushroom-like shape and occasionally change their position in the mantle. The lifetime of each flow can attain 100 Ma. Using markers allows visualizing the evolution of the shape of the mantle plumes.  相似文献   

12.
If the interpretation of the D″ layer at the base of the mantle as a thermal boundary layer, with a temperature increment in the order of 800 K, is correct, then the formation of deep-mantle plumes to vent material from it appears inevitable. We demonstrate quantitatively that the strong temperature dependence of viscosity guides the upward flow into long-lived chimneys that are ~ 20 km in diameter near the base of the mantle and decrease in width with progressive upward softening and partial melting of plume material. The speed of flow up the axis of the plume is correspondingly fast; 1.6 m y?1 at the base and 4.8 m y?1 at 670 km depth. Thermal diffusive spreading of a heated plume is compensated by a slow horizontal convergence of mantle material toward the chimney in response to the lower pressure there. This convergence, which contributes only a small increment to the flux of material up the plume, also serves to throttle the flow in the chimney. The global plume mass flux necessary to transport 1.6 × 1012 W of core heat upward through the mantle is 1.8 × 106 kg s?1. At its base, plume material is probably still significantly below its solidus or eutectic temperature, but substantial partial melting is very likely as it rises. We speculate that a small fraction of this fluid component eventually emerges at the surface in “hot spots”, with the fate of the remainder being unknown. The behaviour and properties of D″ and of plumes are closely coupled. Not only are plumes a necessary consequence of a thermal boundary layer, but their existence is impossible without that layer.  相似文献   

13.
Okmok Volcano, in the eastern Aleutian Islands, erupted in February and March of 1997 producing a 6-km-long lava flow and low-level ash plumes. This caldera is one of the most active in the Aleutian Arc, and is now the focus of international multidisciplinary studies. A synthesis of remotely sensed data (AirSAR, derived DEMs, Landsat MSS and ETM+ data, AVHRR, ERS, JERS, Radarsat) has given a sequence of events for the virtually unobserved 1997 eruption. Elevation data from the AirSAR sensor acquired in October 2000 over Okmok were used to create a 5-m resolution DEM mosaic of Okmok Volcano. AVHRR nighttime imagery has been analyzed between February 13 and April 11, 1997. Landsat imagery and SAR data recorded prior to and after the eruption allowed us to accurately determine the extent of the new flow. The flow was first observed on February 13 without precursory thermal anomalies. At this time, the flow was a large single lobe flowing north. According to AVHRR Band 3 and 4 radiance data and ground observations, the first lobe continued growing until mid to late March, while a second, smaller lobe began to form sometime between March 11 and 12. This is based on a jump in the thermal and volumetric flux determined from the imagery, and the physical size of the thermal anomalies. Total radiance values waned after March 26, indicating lava effusion had ended and a cooling crust was growing. The total area (8.9 km2), thickness (up to 50 m) and volume (1.54×108 m3) of the new lava flow were determined by combining observations from SAR, Landsat ETM+, and AirSAR DEM data. While the first lobe of the flow ponded in a pre-eruption depression, our data suggest the second lobe was volume-limited. Remote sensing has become an integral part of the Alaska Volcano Observatory’s monitoring and hazard mitigation efforts. Studies like this allow access to remote volcanoes, and provide methods to monitor potentially dangerous ones.  相似文献   

14.
In order to predict the behaviour of plumes from three deep ocean outfalls for sewage off Sydney, three-dimensional numerical modelling was used. The modelling suite was driven by data generated by an oceanographic monitoring station measuring wind, ocean currents, temperature and wave characteristics. Three different modelling phases are implemented daily, a nearfield model, a hydrodynamic model and a water quality model. Model output can be used by the New South Wales Environment Protection Authority to predict water quality at ocean beaches and inform the community.  相似文献   

15.
We have developed a new theoretical model of an eruption column that accounts for the re-entrainment of particles as they fall out of the laterally spreading umbrella cloud. The model illustrates how the mass flux of particles in the plume may increase with height in the plume, by a factor as large as 2.5 because of this recycling. Three important consequences are that (1) the critical velocity required to generate a buoyant eruption column for a given mass flux increases, (2) the total height of rise of the column may decrease, and (3) we infer that in relatively wind-free environments, for eruption columns near the conditions for collapse, the recycling of particles may lead to an unsteady oscillating motion of the plume, which, in time, may lead to the formation of interleaved fall and flow deposits.  相似文献   

16.
Mt. Etna, in Sicily (Italy), is one of the world's most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system with polar satellite data represents a novel approach to monitor Etna's eruptive activity, and makes Etna one of the few volcanoes for which this surveillance combination is routinely available.In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA–AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their dimensions and plume height, taking into account wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures.  相似文献   

17.
Oil pollution is a problem in the North Sea. Important sources of oil pollution are spills and drill cutting. Echinoderms are a major component of the macrobenthos in the North Sea (and elsewhere). They tend to be very sensitive to various types of marine pollution. Many species of echinoderms contain symbiotic sub-cuticular bacteria (SCB). The response of Amphiura filiformis, A. chiajei and Ophiothrix fragilis, all of which contain SCB, to oil pollution was studied in laboratory experiments, mesocosms and in the field. Sublethal stress was monitored by examining changes in the tissue loading of SCB. When subjected to hydrocarbon insult, there was a decline in the number of SCB. The potential use of SCB abundance to detect sublethal stress is discussed.  相似文献   

18.
Vertical ash plumes were imaged at Santiaguito (Guatemala) using a thermal camera to capture plume ascent dynamics. The plumes comprised a convecting plume front fed by a steady feeder plume. Of the 25 plumes imaged, 24 had a gas thrust region within which ascent velocities were 15–50 m s−1. A transition to buoyant ascent occurred 20 to 50 m above the vent, where ascent velocities declined to 4–15 m s−1. Plumes that attained greater heights had higher heat contents, wider feeder plumes and higher buoyant ascent velocities.  相似文献   

19.
Mantle plumes control magnetic reversal frequency   总被引:2,自引:0,他引:2  
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from theD″ seismic layer just above the core/mantle boundary, thinningD″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for bothα2 andαω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core.  相似文献   

20.
SAR浅海水下地形遥感探测技术综述   总被引:2,自引:0,他引:2       下载免费PDF全文
SAR已成为浅海水下地形探测的重要技术手段之一.与传统浅海水下地形探测技术相比,SAR浅海水下地形遥感探测技术具有明显的经济效益.该水深探测技术通过对浅海水下地形SAR图像仿真模型的反演求解,从SAR图像中提取水下地形信息.本文回顾了SAR浅海水下地形遥感探测技术的不同数值模型和应用实例,并针对目前SAR浅海水下地形遥感探测技术存在的问题和今后研究方向进行了探讨和总结.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号