首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We present a Mars General Circulation Model (GCM) numerical investigation of the physical processes (i.e., wind stress and dust devil dust lifting and atmospheric transport) responsible for temporal and spatial variability of suspended dust particle sizes. Measurements of spatial and temporal variations in airborne dust particles sizes in the martian atmosphere have been derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectral and emission phase function data [Wolff, M.J., Clancy, R.T., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002057. 1-1; Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002058. 2-1]. The range of dust particle sizes simulated by the NASA Ames GCM is qualitatively consistent with TES-derived observations of effective dust particle size variability. Model results suggest that the wind stress dust lifting scheme (which produces regionally confined dust lifting) is the process responsible for the majority of the dust particle size variability in the martian atmosphere. Additionally, model results suggest that atmospheric transport processes play an important role in the evolution of atmospheric dust particles sizes during substantial dust storms on Mars. Finally, we show that including the radiative effects of a spatially variable particle size distribution significantly influences thermal and dynamical fields during the dissipation phase of the simulated global dust storm.  相似文献   

2.
Images of Mars in the visible to near-infrared acquired from 1996 to 2005 using the Hubble Space Telescope WFPC2 have been used to model the martian surface photometric function at 502, 673, 953, and 1042 nm. These data range in spatial resolution from 12 to 70 km/pixel at the sub-Earth point, and in phase angle coverage from 0.34° to 40.5°. The WFPC2 images have been calibrated to radiance factor or I/F and projected to a cylindrical map for coregistration and comparison to similarly mapped spacecraft data sets of albedo, topography, thermal inertia, composition, and geology. We modeled the observed I/F as a function of phase angle using Minnaert, Lambert, lunar-Lambert, and Hapke photometric functions for numerous regions of interest binned into albedo units defined by Viking and TES albedo maps, and thermal-inertia units defined by TES thermal-inertia maps. Visibly opaque water-ice clouds and data acquired under high dust opacity conditions were excluded from the analysis. Our modeling suggests that under average to low atmospheric dust opacity conditions and over this range of phase angles, the photometric properties of the martian surface at 502, 673, 953, and 1042 nm are best modeled by lunar-Lambert functions with parameters derived for three surface units defined by low, moderate, and high TES bolometric albedos.  相似文献   

3.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

4.
High spatial resolution images of Mars were acquired with the Advanced Electro-Optical System (AEOS) 3.63-meter telescope at the Maui Space Surveillance System (MSSS) during both the 2001 and 2003 Mars apparitions. Comparisons are made of the surface albedo patterns obtained from these AEOS images to the surface albedo maps constructed from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data taken during the same time periods. These comparisons demonstrate that the images provide albedo information in a limited area surrounding the sub-Earth point that is consistent with the TES-derived albedo field. Additionally, it is shown that by employing adaptive optics (AO), the typical ground-based observing season of Mars can be extended. This is the only known published AO data set of Mars with temporal coverage over an entire apparition. Changes in the surface albedo affect the local ground temperature, which impacts the depth of the planetary boundary layer (PBL) above the surface. Since it is the state of the PBL that controls surface/atmospheric interaction, albedo variations have the power to alter the amount of dust that is lifted. A one-dimensional radiative/convective version of the NASA Ames Mars General Circulation Model is used to demonstrate that the measured albedo variations can alter the daytime ground temperatures by as much as 5 K, which in turn alters the structure of the planetary boundary layer (PBL). Therefore, albedo changes are thermodynamically important, and the ability to characterize them, should orbital observations become unavailable, is a valuable capability.  相似文献   

5.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   

6.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

7.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

8.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

9.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

10.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

11.
Temporal variations in the visible/near-infrared reflectance spectra of the radiometric calibration targets on the Mars Pathfinder (MPF) lander obtained by the Imager for Mars Pathfinder (IMP) camera reveal the effects of aeolian dust deposition at the MPF site throughout the mission. Sky brightness models in combination with two-layer radiative transfer models were used with these data to track changes in dust opacity on the radiometric calibration targets (RCTs) to constrain the dust deposition rate and the spectral properties of the deposited dust. Two-layer models were run assuming both linear and nonlinear dust accumulation rates, and suggest that RCT dust optical depth at the end of the 83-sol mission was 0.08 to 0.16, or on the order of 5- to 10-μm thickness for plausible values for dust porosity and grain size. These values correspond to dust fall rates of about 20-45 μm per Earth year, consistent with previous studies of dust deposition on Mars. The single scattering albedos of the dust derived from the models fall between those previously determined for atmospheric dust and bright soils. Comparisons of relative reflectance spectra calibrated using observed RCT radiances from late in the mission versus using radiances from modeled (dust-free) RCTs also reveal distinct spectral differences consistent with dust on the RCTs. Temporal variations in RCT dust opacity are not clearly linked to known passages of vortices at the MPF site, but overall suggest that deposition of dust onto the targets by local dust devils may be favored over erosion. Analyses of temporal changes in visible/near-infrared spectra will provide valuable information for future missions by constraining how dust deposition affects landed spacecraft operability (e.g., solar power availability), instrument calibration, and interpretations of surface mineralogy and composition.  相似文献   

12.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

13.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

14.
Interpretations of visible/near-infrared reflectance spectra of Mars are often complicated by the effects of dust coatings that obscure the underlying materials of interest. The ability to separate the spectral reflectance signatures of coatings and substrates requires an understanding of how their individual and combined reflectance properties vary with phase angle. Toward this end, laboratory multispectral observations of rocks coated with different amounts of Mars analog dust were acquired under variable illumination and viewing geometries using the Bloomsburg University Goniometer (BUG). These bidirectional reflectance distribution function (BRDF) data were fit with a two-layer radiative transfer model, which replicated BUG observations of dust-coated basaltic andesite substrates relatively well. Derived single scattering albedo and phase function parameters for the dust were useful in testing the model's ability to derive the spectrum of a “blind” substrate (unknown to the modeler) coated with dust. Subsequent tests were run using subsets of the BUG data restricted by goniometric or coating thickness coverage. Using the entire data set provided the best constraints on model parameters, although some reductions in goniometric coverage could be tolerated without substantial degradation. Predictably, the most thinly coated samples provided the best information on the substrate, whereas the thickest coatings best replicated the dust. Dust zenith optical thickness values ∼0.6-0.8 best constrain the substrate and coating simultaneously, particularly for large ranges of incidence or emission angles. The lack of sufficient angles can be offset by having a greater number and range of coatings thicknesses. Given few angles and thicknesses, few constraints can be placed concurrently on the spectral properties of the coating and substrate.  相似文献   

15.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

16.
D. Reiss  J. Raack  H. Hiesinger 《Icarus》2011,211(1):917-920
We report on the first observations of bright dust devil tracks (BDDTs) on Earth, observed in the Turpan depression desert in northwestern China, where raindrop impacts on sand surfaces form aggregates of sand, silt and clay resulting in rough surface textures, which are destroyed by passages of dust devils leading to smooth surface textures within the tracks. The differences in photometric properties between the track and outside the tracks cause the albedo differences leading to the formation of BDDTs and similar processes might lead to BDDTs on Mars in areas with thick dust covers.  相似文献   

17.
The Mars Reconnaissance Orbiter observes Mars from a nearly circular, polar orbit. From this vantage point, the Mars Color Imager extends the ∼5 Mars years record of Mars Global Surveyor global, visible-wavelength multi-color observations of meteorological events and adds measurements at three additional visible and two ultraviolet wavelengths. Observations of the global distribution of ozone (which anti-correlates with water vapor) and water ice and dust clouds allow tracking of atmospheric circulation. Regional and local observations emphasize smaller scale atmospheric dynamics, especially those related to dust lifting and subsequent motion. Polar observations detail variations related to the polar heat budget, including changes in polar frosts and ices, and storms generated at high thermal contrast boundaries.  相似文献   

18.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   

19.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   

20.
David P. Hinson  Huiqun Wang 《Icarus》2010,206(1):290-1294
We have investigated the near-surface meteorology in the northern hemisphere of Mars through detailed analysis of data obtained with Mars Global Surveyor in January-August 2005. The season in the northern hemisphere ranged from midsummer through winter solstice of Mars Year (MY) 27. We examined composite, wide-angle images from the Mars Orbiter Camera and compiled a catalog of the dust storms that occurred in this interval. As in previous martian years, activity in the northern hemisphere was dominated by regional “flushing” dust storms that sweep southward through the major topographic basins, most frequently in Acidalia Planitia. We also used atmospheric profiles retrieved from radio occultation experiments to characterize eddy activity near the surface at high northern latitudes. There are strong correlations between the two sets of observations, which allowed us to identify three factors that influence the timing and location of the regional dust storms: (1) transitions among baroclinic wave modes, which strongly modulate the intensity of meridional winds near the surface, (2) storms zones, which impose strong zonal variations on the amplitude of some baroclinic eddies, and (3) stationary waves, which further modulate the wind field near the surface. The flushing dust storms ceased abruptly in midautumn, possibly in response to source depletion, CO2 condensation, a shift in the period of the baroclinic eddies, and changes in the tidal wind field near the surface. Our results extend the meteorological record of the northern hemisphere, substantiate the findings of previous investigations, and further illuminate the climatic impact of baroclinic eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号