首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
利用2013年8月北京C波段双偏振多普勒天气雷达体扫数据、探空资料和地面雨量站资料,获得反射率因子垂直廓线(vertical profile of reflectivity,VPR)识别零度层亮带,比较平均反射率因子垂直廓线(mean VPR,MVPR)、显著反射率因子垂直廓线(apparent VPR,AVPR)和显著相关系数垂直廓线(apparent vertical profile of correlation coefficient,AVPCC)3种零度层亮带订正方法的效果,并利用地面雨量站资料进行定量降水估计(quantity precipitation estimation,QPE)验证订正效果。结果表明:采用MVPR和0℃层高度能有效识别零度层亮带,零度层亮带厚度为0.8~1.5 km;经3种方法订正后,零度层亮带影响区得到了不同程度的抑制,其中MVPR法订正效果最差,基本未能减弱零度层亮带的影响,AVPR法和AVPCC法的订正效果较好,明显减弱了零度层亮带影响区的回波强度,订正后回波更均匀。利用地面雨量站数据进行QPE验证表明:经零度层亮带订正后雷达估测的降水与地面雨量站实测降水更接近,也表明AVPR法和AVPCC法效果更好。  相似文献   

2.
庄薇  刘黎平  胡志群 《气象》2013,39(8):1004-1013
零度层亮带是指雪花或冰晶降落到零度层附近,表面发生融化而使雷达反射率突然增大的现象.它是影响雷达资料质量的重要因素,常会导致雷达估测降水的高估.青藏高原海拔高、零度层低,零度层以下的降水范围非常有限,亮带对青藏高原地区的雷达估测降水的影响更加显著.因此,对亮带进行自动识别订正,对提高青藏高原雷达降水估测的精度有重要意义.本文在考虑青藏高原遮挡严重的情况下,通过计算反射率垂直廓线来识别零度层亮带,对亮带区域进行订正,并将亮带订正前后的混合扫描反射率分别估测降水,分析亮带订正对降水估测误差的影响.结果表明:雷达识别的亮带高度在探空资料零度层以下几百米内;亮带订正前,反射率垂直廓线在零度层附近有显著弯曲,雷达对降水的估测明显偏高;亮带订正后,反射率垂直廓线在零度层附近的显著弯曲消失,雷达估测的降水量与雨量计的观测值较一致,降水估测误差比订正前明显减小.  相似文献   

3.
毫米波雷达资料融化层亮带特征的分析及识别   总被引:1,自引:0,他引:1  
云的融化层亮带位置、厚度及其回波强度的垂直结构变化信息对于云和降水物理研究、人工影响天气指挥和效果评估,数值模拟云参数化均有非常重要的意义。为了了解云层融化层高度的精确位置,根据云雷达在广东、河北、吉林等不同云过程总计456个例分析(其中确认融化层明显个例34次),系统分析云雷达探测到融化层亮带宏观参量的统计情况,包括融化层厚度、反射率因子在融化层强度变化、退偏振因子在融化层的强度变化,并提出了一种结合垂直探测的云雷达探测到的雷达反射率因子(R)和退偏振因子(Ldr)垂直廓线数据,根据参量在融化层附近显著变化特性,识别零度层亮带高度和厚度的算法。同时选取个例对应观测时刻探空资料观测的0°层高度进行对比,反演的融化层高度等参数同实际情况比较接近,位于探空资料观测的0°层下方,而且退偏振因子对融化层的敏感程度大于反射率因子。  相似文献   

4.
CINRAD-SA/SB零度层亮带识别方法   总被引:3,自引:1,他引:2       下载免费PDF全文
该文提出一种使用S波段多普勒天气雷达回波三维特征和反射率因子垂直廓线(vertical profile of reflectivity,VPR)来自动识别零度层亮带的方法(简称3DVPR-BBID),并利用2003年6月22日—7月11日和2007年7月合肥雷达资料、2008年6月广州雷达资料以及相应的探空资料,同仅使用VPR识别零度层亮带的方法(简称VPR-BBID)进行比较。结果表明:VPR-BBID和3DVPR-BBID在大部分情况下能够有效识别零度层亮带的存在,而且3DVPR-BBID能够减少VPR-BBID产生的误识别。在同探空资料观测的零度层高度的比较中,两种方法确定的零度层高度同实况比较接近,进一步分析表明:3DVPR-BBID确定的零度层高度比VPR-BBID确定的更接近观测值。  相似文献   

5.
回波强度垂直廓线与雷达定量估测降水的关系   总被引:1,自引:0,他引:1  
为了分析不同高度回波强度与地面降水的关系,提高雷达定量估测降水的能力,本文对石家庄2006~2008年5~9月共77次降水过程的反射率因子垂直廓线(VPR)进行了统计分析。对比降水实况和VPR发现,各个高度层的反射率因子波峰(谷)同降水波峰(谷)相一致,而且降水强度越大,反射率因子核心高度越低。同时,还比较了距离雷达站不同的水平距离和不同海拔高度的反射率因子特征,发现海拔高度对5 mm/h以下降水率和垂直高度在4 km以下各层的反射率因子会造成一定的影响,而对强降水和高层反射率因子影响较小。另外,零度层亮带在VPR上表现出反射率因子增大的特征,影响降水估测效果。为了消除零度层亮带的影响,选取1.5~3.5 km为估测降水的最佳高度范围,各站具体选取高度则取决于其距雷达站的水平距离和海拔高度。  相似文献   

6.
石家庄地区反射率因子垂直廓线特征分析   总被引:2,自引:1,他引:1  
利用自动雨量计数据整理成的10 min一次的雨量资料和s波段多普勒天气雷达体积扫描强度数据,对石家庄地区2004~2007年4次天气过程的实时雷达反射率因子垂直廓线的特征进行了分析.结果表明:层状云和混合性降水反射率因子垂直廓线有明显的零度层亮带;短时强降水过程的反射率因子垂直廓线不存在零度层亮带.冰雹过程中反射率凼子垂直廓线变化较大,降雹前反射率因子的极大值在中上层,降雹发生时反射率因子的极大值高度下降,降雹后反射率因子的极大值减弱.降雪过程的反射率因子垂直廓线零度层亮带不明显.在石家庄西部山区,由于零度层亮带的影响.对层状云和混合性降水回波强度和降水量估计偏高.对短时强降水过程的地面降水估计用反射率因子垂直廓线的方法比最低仰角法更加准确,在均匀性降水中可较好地改善地面雨量估算结果,有利于在山区和无雨量计的地区判断强对流天气的发生、发展和估算降水量的大小.  相似文献   

7.
该文介绍了一种自动识别和移除雷达反射率因子资料中亮带的算法, 并对该算法进行了初步测试。该算法利用的是插值到直角坐标系中的雷达反射率因子资料, 其配置和运行也相对简单, 但却对移除亮带比较有效。首先, 设定一套雷达反射率因子垂直廓线的理想模板, 这些理想的模板能够在最大程度上反映不同亮带存在区域的雷达实际反射率因子的垂直廓线特征。然后, 在水平方向每个点上, 进行理想模板和实际反射率因子垂直廓线在垂直和水平两个方向上的拟合和差异计算, 来自动识别雷达反射率因子中存在的连续亮带区域。最后, 利用亮带之上和亮带之下的反射率因子值对亮带中的反射率因子值进行插值纠正, 就可以移除亮带。利用位于天津塘沽的我国新一代天气雷达 (CINRAD/SA) 的反射率因子资料, 通过个例分析和准业务运行试验, 均表明这个简单算法可以识别和移除绝大多数影响雷达定量降水估计的反射率因子亮带区域, 但是实际雷暴区域的反射率因子特征受到该算法的影响比较小。计算分析还表明, 在京津地区的初夏, 上述亮带区域一般容易出现在2.5 km左右的高度处。  相似文献   

8.
张征宇  薛震刚  许丽人  高太长 《气象》2017,43(2):197-205
在降水过程中,固态降水粒子下落穿越0℃等温线的融化效应会引起雷达反射率因子增大,产生亮带。文章基于北京房山地区的边界层风廓线雷达的探测资料,对2014年8—10月四次典型的层状云降水和以层状云为主的混合性降水过程进行特征统计,提出了适用于该季节、该地区的0℃层亮带自动识别订正算法,并使用这种算法对一次层状云为主的混合性降水天气过程进行了识别研究,通过与探空资料、多普勒天气雷达资料的对比检验,结果表明该算法可以有效识别该季节、该地区的0℃层亮带,通过亮带订正,融化区的回波强度高值区得到了有效抑制,原亮带高度附近回波强度廓线的显著弯曲消失,融化区之外的回波强度基本没有变化。  相似文献   

9.
多普勒雷达实时反射率因子垂直廓线观测研究   总被引:5,自引:2,他引:3  
使用2002年6~7月长江中游地区宜昌S波段多普勒雷达在两次大范围混合性强降水过程中部分时段体积扫描强度数据以及周边100km范围内的7个雨量计整理成10min记录一次的雨量资料,分析了实时雷达反射率因子垂直廓线的特征。研究表明:反射率因子垂直廓线可反映出所选区域上空零度层亮带高度位置、回波的垂直变化规律等信息,以此分析降水的类型、云中粒子的发展变化;从雷达连续体扫得到的中、低仰角对应高度上的实时反射率因子垂直廓线的变化规律、PPI图像上对应雨量站点上空的回波变化情况及10min记录一次的地面雨量的变化趋势对比来看,发现三者能很好地统一起来,可用来较细致地分析降水云体的变化,有利于在无地面雨量计的地区分析降水量的大小、确定降水类型、估测降水的发展;对无亮带、反射率因子值较大而且越低仰角值越大的反射率因子垂直廓线的区域,对应地面上常有对流性强降水出现。  相似文献   

10.
雷达定量估测降水的亮带自动消除改进方法   总被引:2,自引:0,他引:2       下载免费PDF全文
层状云降水中,0 ℃层融化效应会引起雷达反射率因子局部增大,若不进行订正,则会高估雷达估测的降水.本文提出一种基于新一代天气雷达反射率因子垂直廓线的0 ℃层亮带自动识别与订正算法,以减小因亮带造成的降水高估.本研究首先对降水类型进行分类,在SHY95的基础上增加了垂直方向的反射率因子三维特征,避免亮带的反射率因子高值区被误识别为对流云区;其次,在层状云区识别出一个可能的亮带影响区,在其中查找亮带,采用旋转坐标系法精确的识别亮带的顶、底高度;最后,利用最小二乘法拟合亮带上、下层的斜率,平滑垂直廓线(VPR,Vertical Profile of Reflectivity)的显著突出部分.将该方法应用于北京地区2010—2011年10次包含亮带的降水过程,得到的亮带订正后的均方根误差ERMS、平均绝对误差ERMA、平均相对误差BRM值较初值均有显著减小(分别减小1.538 mm,0.417和0.468).结果表明,该方法能够有效地识别与订正亮带,使得定量测量降水精度有所提高.  相似文献   

11.
任意基线雷达反射率因子垂直剖面生成算法   总被引:2,自引:1,他引:1       下载免费PDF全文
该文提出了一种基于雷达体扫资料的任意基线雷达反射率因子垂直剖面的生成算法。在计算雷达反射率因子垂直剖面上的格点在雷达极坐标中的仰角、方位和斜距位置后, 采用径向、方位上的最近邻居和垂直方向的线性内插相结合的客观分析方法得到格点上的反射率因子分析值。在垂直线性内插时分别用dBZ值和Z值 (单位: mm6/m3) 进行插值。结果表明:用该方法得到的雷达反射率因子垂直剖面从回波强度和空间位置来看都是合理的; 当采用垂直线性内插时, 用dBZ值插值比用Z值插值得到的雷达反射率因子垂直剖面在空间分布上更连续, 反射率因子分析值总体上更接近观测值; 低仰角的插值效果比高仰角的好。  相似文献   

12.
The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of significant overestimation in quantitative precipitation estimation(QPE) based on the Z–R(reflectivity factor–rain rate) relationship.The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity(VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands(S-, C-and X-band) of dual-polarized radars and to reduce overestimation errors in Z–R relationship–based QPEs. After the reflectivity was corrected by the algorithms using average VPR(AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient(AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gauge observations, separately. The overestimation of Z–R relationship–based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE(root-mean-square error), RMAE(relative mean absolute error) and RMB(relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28,0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively.The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.  相似文献   

13.
雷达回波垂直廓线及其生成方法   总被引:6,自引:4,他引:6       下载免费PDF全文
研究雷达回波Z (R) 垂直廓线VPR有两个重要内容: 一是VPR的生成方法, 二是用VPR订正雷达估算降水的技术。在简要比较现有生成方法———参数法、平均法和识别法的主要特点后, 认为平均垂直廓线MVPR具有简便、实用的优点。文章着重对MVPR的生成方法作了细致的探讨, 形成了4种生成算法, 并作了比较; 展示了各种生成参数对MVPR的不同作用, 并简要介绍了一个应用程序框图。对两个降水实例实施订正后初步评估表明, 用MVPR订正雷达估算降水可使评估因子R/G从0.84 (0.86) 提高到0.93 (0.97), 而绝对误差率则下降4%。  相似文献   

14.
Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong,DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004–2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The ...  相似文献   

15.
In this study, the vertical profiles of radar refractive factor (Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using the SimRAD software, and the contributions of each impact resulting in the bright band were analyzed quantitatively. In the simulation, the parameters inputted into SimRAD were updated until the output Z profile was nearly consistent with the observation. The input parameters were then deemed to reflect real conditions of the cloud and precipitation. The results showed that a wider (narrower) and brighter (darker) bright band corresponded to a larger (smaller) amount, wider (narrower) vertical distribution, and larger (smaller) mean diameter of melting particles in the melting layer. Besides this, radar reflectivity factors under the wider (narrower) melting layer were lager (smaller). This may be contributed to the adequate growth of larger rain drops in the upper melting layer. Sensitivity experiments of the generation of the radar bright band showed that a drastic increasing of the complex refractive index due to melting led to the largest impact, making the radar reflectivity factor increase by about 15 dBZ. Fragmentation of large particles was the second most important influence, making the value decrease by 10 dBZ. The collision–coalescence between melting particles, volumetric shrinking due to melting, and the falling speed of raindrops made the radar reflectivity factor change by about 3–7 dBZ. Shape transformation from spheres to oblate ellipsoids resulted in only a slight increase in the radar reflectivity factors (about 0.2 dBZ), which might be due to the fact that there are few large particles in stratiform cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号