首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Passive-phase conjugation (PPC) uses passive time reversal to remove intersymbol interferences (ISIs) for acoustic communications in a multipath environment. It is based on the theory of signal propagation in a waveguide, which says that the Green's function (or the impulse-response function) convolved with its time-reversed conjugate, summed over a (large-aperture) vertical array of receivers (denoted as the Q function) is approximately a delta function in space and time. A decision feedback equalizer (DFE) uses a nonlinear filter to remove ISI based on the minimum mean-square errors (mmse) between the estimated symbols and the true (or decision) symbols. These two approaches are motivated by different principles. In this paper, we analyze both using a common framework. We note the commonality and differences, and pros and cons, between the two methods and compare their performance in realistic ocean environments, using simulated and at-sea data. The performance measures are mean-square error (mse), output signal-to-noise ratio (SNR), and bit-error rate (BER) as a function of the number of receivers. For a small number of receivers, the DFE outperforms PPC in all measures. The reason for poor PPC performance is that, for a small number of receivers, the Q function has nonnegligible sidelobes, resulting in nonzero ISI. As the number of receivers increases, the BER for both processors approaches zero, but at a different rate. The modeled performance differences (in mse and SNR) between PPC and DFE are in general agreement with the measured values from at-sea data, providing a basis for performance prediction.  相似文献   

2.
Spatial processing, including beamforming and diversity combining, is widely used in communications to mitigate intersymbol interference (ISI) and signal fading caused by multipath propagation. Beamforming suppresses ISI (and noise) by eliminating multipath (and noise) arrivals outside the signal beam. Beamforming requires the signals to be highly coherent between the receivers. Diversity combining combats ISI as well as signal fading by taking advantage of the independent information in the signal. Classical (spatial) diversity requires that signals are independently fading, hence are (spatially) uncorrelated with each other. In the real world, the received signals are neither totally coherent nor totally uncorrelated. The available diversity is complex and not well understood. In this paper, we study the spatial processing gain (SPG) as a function of the number of receivers used, receiver separation, and array aperture based on experimental data, using beamforming and multichannel combining algorithms. We find that the output symbol signal-to-noise ratio (SNR) for a multichannel equalizer is predominantly determined by the array aperture divided by the signal coherence length, with a negligible dependence on the number of receivers used. For a given number of receivers, an optimal output symbol SNR (OSNR) is achieved by spacing the receivers equal to or greater than the signal coherence length. We model the SPG in decibels as the sum of the noise suppression gain (NSG, equivalent to signal-to-noise enhancement) and the ISI suppression gain (ISG, equivalent to signal-to-ISI enhancement) both expressed in decibels; the latter exploits the spatial diversity and forms the basis for the diversity gain. Data are interpreted using the modeled result as a guide. We discuss a beam-domain processor for sonar arrays, which yields an improved performance at low-input SNR compared to the element-domain processor because of the SNR enhancement from beamforming many sensors.  相似文献   

3.
High-throughout multiple-access communication networks are being considered for use in underwater acoustic channels. Bandwidth limitations of underwater acoustic channels require receivers to process broad-band communications signals in the presence of several active users. To deal with the resulting multiple-access interference in addition to high intersymbol interference, the spatial variability of ocean multipath is exploited in a multichannel multiuser receiver. Two configurations of such a receiver, a centralized and a decentralized one, are presented in fully adaptive modes of operations. While greatly reducing intersymbol and multiple-access interference, spatial diversity implies high increase in adaptive multiuser receiver complexity. To reduce the complexity of the optimal multichannel combiner, spatial structure of multipath is exploited. The complexity of resulting adaptive decentralized multichannel multiuser receiver is reduced at almost no cost in performance. Comparison of proposed multichannel receivers in an experimental shallow water channel demonstrates superior performance of spatial signal combining. The use of multiple input channels is shown to provide high level of tolerance for the near-far effect in both centralized and decentralized receivers. Decentralized receiver with reduced-complexity combining is found to satisfy the performance/complexity trade-off required for practical receiver realization in shallow water networks  相似文献   

4.
The spatial and temporal focusing properties of time-reversal methods can be exploited for undersea acoustic communications. Spatial focusing mitigates channel fading and produces a high signal-to-noise ratio (SNR) at the intended receivers along with a low probability of interception elsewhere. While temporal focusing (compression) reduces significantly intersymbol interference (ISI), there always is some residual ISI depending upon the number of transmitters, their spatial distribution (spatial diversity), and the complexity of the channel. Moreover, a slight change in the environment over the two-way propagation interval introduces additional ISI. Using multilevel quadrature amplitude modulation (M-QAM) in shallow water, we demonstrate that the performance of time-reversal communications can be improved significantly by cascading the received time series with an adaptive channel equalizer to remove the residual ISI  相似文献   

5.
Spatial diversity equalization applied to underwater communications   总被引:1,自引:0,他引:1  
Underwater acoustic digital communication is difficult because of the nature of the fading multipath channels. Digital signal processing, such as adaptive equalization, is known to greatly improve the communication data rate by limiting intersymbol interference (ISI). However, existing underwater acoustic equalization studies are limited to single-channel techniques, and spatial diversity processing is limited to selection or combining. In this paper, we design minimum mean-square error (MMSE) equalizers jointly among all spatial diversity channels. We call this spatial diversity equalization (SDE). Results are based on a very sparse vertical array in a midrange underwater acoustic channel. We study the effect of element number and placement, the length of the equalization filters, and linear feedforward versus nonlinear decision feedback algorithms. A suboptimum equalizer combiner (EC) is studied to alleviate the computational intensity of JCE. We first design the system for a known acoustic channel; later, some results are verified using adaptive algorithms. Results are presented both in terms of the mean-square error (MSE) and the probability of a symbol error. The latter is important as it is the ultimate interest for a digital communication system. We found that system performance improves rapidly with an increase in the number of spatial channels  相似文献   

6.
A large increase in the reliability of shipboard or stationary underwater acoustic telemetry systems is achievable by using spatially distributed receivers with aperture sizes from 0.35 to 20 m. Output from each receiver is assigned a quality measure based on the estimated error rate, and the data, weighted by the quality measure, are combined and decoded. The quality measure is derived from a Viterbi error-correction decoder operating on each receiver and is shown to perform reliability in a variety of non-Gaussian noise and jamming environments and reduce to the traditional optimal diversity system in a Gaussian environment. The dynamics of the quality estimator allow operation in the presence of high-power impulsive interference by exploiting the signal and noise differential travel times to individual sensors. The spatial coherence structure of the shallow water acoustic channel shows relatively low signal coherence at separations as short as 0.35 m. Increasing receiver spacing beyond 5 m offers additional benefits in the presence of impulsive noise and larger-scale inhomogeneities in the acoustic field. A number of data transmission experiments were carried out to demonstrate system performance in realistic underwater environments  相似文献   

7.
Multichannel Detection for Wideband Underwater Acoustic CDMA Communications   总被引:4,自引:0,他引:4  
Direct-sequence (DS) code-division multiple access (CDMA) is considered for future wideband mobile underwater acoustic networks, where a typical configuration may include several autonomous underwater vehicles (AUVs) operating within a few kilometers of a central receiver. Two receivers that utilize multichannel (array) processing of asynchronous multiuser signals are proposed: the symbol decision feedback (SDF) receiver and the chip hypothesis feedback (CHF) receiver. Both receivers use a chip-resolution adaptive front end consisting of a many-to-few combiner and a bank of fractionally-spaced feedforward equalizers. In the SDF receiver, feedback equalization is implemented at symbol resolution, and receiver filters, including a decision-directed phase-locked loop, are adapted at the symbol rate. This limits its applicability to the channels whose time variation is slow compared to the symbol rate. In a wideband acoustic system, which transmits at maximal chip rate, the symbol rate is down-scaled by the spreading factor, and an inverse effect may occur by which increasing the spreading factor results in performance degradation. To eliminate this effect, feedback equalization, which is necessary for the majority of acoustic channels, is performed in the CHF receiver at chip resolution and receiver parameters are adjusted at the chip rate. At the price of increased computational complexity (there are as many adaptive filters as there are symbol values), this receiver provides improved performance for systems where time variation cannot be neglected with respect to the symbol rate [e.g., low probability of detection (LPD) acoustic systems]. Performance of the two receivers was demonstrated in a four-user scenario, using experimental data obtained over a 2-km shallow-water channel. At the chip rate of 19.2 kilochips per second (kc/s) with quaternary phase-shift keying (QPSK) modulation, excellent results were achieved at an aggregate data rate of up to 10 kb/s  相似文献   

8.
In this paper, we consider the use of multiple antennas and space-time coding for high data rate underwater acoustic (UWA) communications. Recent advances in information theory have shown that significant capacity gains can be achieved by using multiple-input-multiple-output (MIMO) systems and space-time coding techniques for rich scattering environments. This is especially significant for the UWA channel where the usable bandwidth is severely limited due to frequency-dependent attenuation. In this paper, we propose to use space-time coding and iterative decoding techniques to obtain high data rates and reliability over shallow-water, medium-range UWA channels. In particular, we propose to use space-time trellis codes (STTCs), layered space-time codes (LSTCs) and their combinations along with three low-complexity adaptive equalizer structures at the receiver. We consider multiband transmissions where the available bandwidth is divided into several subbands with guard bands in between them. We describe the theoretical basis of the proposed receivers along with a comprehensive set of experimental results obtained by processing data collected from real UWA communications experiments carried out in the Pacific Ocean. We demonstrate that by using space-time coding at the transmitter and sophisticated iterative processing at the receiver, we can obtain data rates and spectral efficiencies that are not possible with single transmitter systems at similar ranges and depths. In particular, we have demonstrated reliable transmission at a data rate of 48 kb/s in 23 kHz of bandwidth, and 12 kb/s in 3 kHz of bandwidth (a spectral efficiency of 4 bs-1Hz-1) at a 2-km range.  相似文献   

9.
The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and low-complexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.  相似文献   

10.
A time domain synthetic reflection seismogram is detailed and, as a limiting condition on this model, the analytic reflection impulse response for a one-dimensional lossless acoustic medium with piecewise continuous acoustic impedance is obtained. This analytic impulse response solution, in the structure of a sum of terms by order of reflection, provides insight to some of the poorly understood aspects of acoustic reflections from stratified and smoothly varying media as may be encountered in shallow marine sediments and elsewhere. It offers as well an approach for the inverse problem of extracting acoustic impedance profiles from reflection response data, though other effects (such as wavefront spreading, dispersive and absorptive attenuation, and wavelet broadening attendant with pulse propagation through a medium) need to be accommodated.  相似文献   

11.
郭继杰  程恩  王清池 《台湾海峡》2001,20(3):287-291
本文在确定了水声信道的数学描述后,提出了在信道自适应过程中,可以应用子波对信号进行多分辨率分解,逐尺度地对信道进行均衡,这样,不但减少了运算数据量,也减少了均衡所需的权系数个数,计算机仿真结果令人满意。  相似文献   

12.
During July and August of 1996, the summer component of the New England shelfbreak front PRIMER experiment was fielded in the Mid-Atlantic Bight, at a site due south of Martha's Vineyard, MA. This study produced acoustic transmission data from a network of moored sources and receivers in conjunction with very-high-resolution oceanography measurements. This paper analyzes receptions at the northeast array receiver from two 400 Hz acoustic tomography sources, with the transmission paths going from the continental slope onto the continental shelf. These data, along with forward acoustic-propagation modeling based on moored oceanographic data, SeaSoar hydrography measurements, and bottom measurements, reveal many new and interesting aspects of acoustic propagation in a complicated slope-shelf environment. For example, one sees that both the shelfbreak front and tidally generated soliton internal wave packets produce stronger mode coupling than previously expected, leading to an interesting time-and-range-variable population of the acoustic normal modes. Additionally, the arrival time wander and the signal spread of acoustic pulses show variability that can be attributed to the presence of a frontal meander and variability in the soliton field. These and other effects are discussed in this paper, with an emphasis on creating a strong connection between the environmental measurements and the acoustic field characteristics.  相似文献   

13.
为了抗幅度随频率的衰减,提出了一种基于多频移频健控(MFSK)调制方式的水声通信接收系统中的幅度均衡技术,介绍了构成幅度均衡电路的基本原理以及在厦门港浅海域中的实验结果,实验结果表明,该技术能有效克服上系统中的信号民幅度随率的衰减问题。使接收到的图像清晰易读。  相似文献   

14.
An accurate model of acoustic interaction with sandy sediments is crucial to the application of SONAR in shallow-water environments. Because acoustic scattering from interface roughness plays a major role in the reverberation from and penetration into sandy sediments, it is imperative to be able to accurately measure the roughness of the sediment/water interface. An interface roughness measurement system has been developed in which a laser light sheet is projected onto the ocean floor. A resulting image can then be analyzed to determine the interface roughness. The system has been shown to achieve a height measurement error of less than 0.9 mm over a spatial frequency range of 15 to 60 cycles/m with about 0.5 mm standard deviation. These spatial frequencies correspond to acoustic Bragg frequencies of 11 to 45 kHz for backscattering applications. The error in wavelength was less than 5 mm with a standard deviation of about 1.0 mm. The system is inexpensive, easily deployable and automated in terms of data extraction. This system could greatly aid in determining the local interface profile for in situ acoustic scattering experiments.  相似文献   

15.
Estimation of Rapidly Time-Varying Sparse Channels   总被引:2,自引:0,他引:2  
The estimation of sparse shallow-water acoustic communication channels and the impact of estimation performance on the equalization of phase coherent communication signals are investigated. Given sufficiently wide transmission bandwidth, the impulse response of the shallow-water acoustic channel is often sparse as the multipath arrivals become resolvable. In the presence of significant surface waves, the multipath arrivals associated with surface scattering fluctuate rapidly over time, in the sense that the complex gain, the arrival time, and the Dopplers of each arrival all change dynamically. A sparse channel estimation technique is developed based on the delay-Doppler-spread function representation of the channel. The delay-Doppler-spread function may be considered as a first-order approximation to the rapidly time-varying channel in which each channel component is associated with Doppler shifts that are assumed constant over an averaging interval. The sparse structure of the delay-Doppler-spread function is then exploited by sequentially choosing the dominant components that minimize a least squares error. The advantage of this approach is that it captures both the channel structure as well as its dynamics without the need of explicit dynamic channel modeling. As the symbols are populated with the sample Dopplers, the increase in complexity depends on the channel Doppler spread and can be significant for a severely Doppler-spread channel. Comparison is made between nonsparse recursive least squares (RLS) channel estimation, sparse channel impulse response estimation, and estimation using the proposed approach. The results are demonstrated using experimental data. In training mode, the proposed approach shows a 3-dB reduction in signal prediction error. In decision-directed mode, it improves significantly the robustness of the performance of the channel-estimate-based equalizer against rapid channel fluctuations.  相似文献   

16.
Performance limitations in digital acoustic telemetry are addressed. Increases in computational capabilities have led to a number of complex but practical solutions aimed at increasing the reliability of acoustic data links. These solutions range from ocean-basin scale data telemetry to video-image transmission at a few hundred yards' distance. The opportunity to implement highly complex tasks in real time on modest hardware is a common factor. The data rates range from 1 to 500 kb/s and are much slower than satellite channels, while acceptable system complexity is higher than virtually any other channel with comparable data throughput. The basic performance bounds are the channel phase stability, available bandwidth, and the channel impulse response fluctuation rate. Phase stability is of particular concern for long-range telemetry, channel fluctuation characteristics drive equalizer, and synchronizer design; the bandwidth limitation is a direct constraint on data rate for a given signaling method  相似文献   

17.
An ocean acoustic tomography system covering the region of 800×1000 km with the spatial resolution of eddy-resolving scales has been designed on the basis of computer experiments using the hydrographic data collected in the Sea of Japan. The optimum number of acoustic sources required for 20 acoustic receivers was estimated as 13 by changing the source number. The spatial resolution for the optimum system was 41 km smaller than the dominant size of meso-scale eddies in the Sea of Japan. The effect of travel-time errors on tomographic maps is also quantified.  相似文献   

18.
Computer simulations are carried out to study the feasibility of an adaptive equalizer applied to an hydroacoustic data-transmission channel. The channel is examined with a comprehensive acoustical model to acquire worst-case examples of the ocean acoustic transmission channel. The equalizer performance is investigated by simulations with a computer-generated channel response. Equalizer behavior in a mobile time-variant environment is also studied by use of a simplified, time-discrete multipath channel model. A stochastic gradient lattice equalizer is simulated for a channel which varies due to movement of the transmitter platform. The equalizer was able to track a velocity of up to 0.4 m/s for a favorable transmission geometry, using a transmitter beamwidth of 10°. The results demonstrate the feasibility of coherent modulation schemes for medium-distance ocean acoustic telemetry. It was found that small beamwidths are imperative in maintaining signal coherence and in facilitating adaptive equalization. In particular, narrow-beam transducers will reduce equalizer complexity as well as the frequency spread  相似文献   

19.
A key research area in underwater acoustic (UWA) communication is the development of advanced modulation and detection schemes for improved performance and range-rate product. In this communication, we propose a variable-rate underwater data transmission system based on direct sequence spread spectrum (DSSS) and complementary code keying (CCK), particularly for shallow-water acoustic channels with severe multipath propagation. We provide a suboptimum receiver that consists of a bidirectional decision feedback equalizer (BiDFE) to cancel both postcursor and precursor intersymbol interference (ISI). We also develop iterative signal processing and time-reversal (TR) diversity processing to mitigate the effect of error propagation in BiDFE. We present performance analysis on bit error rate (BER) for different data rates. Our works show that this new variable-data-rate DSSS-CCK is a suitable candidate for UWA communications over varying channel conditions and distance.   相似文献   

20.
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号