首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 \(\hbox {kg/hm}^{2}\) (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3–6 d, decrease the speed at which the surface soil thaws by 0.40–0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70–7.40 mm in the thawing period, increase the range of soil evaporation by 0.04–0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25–0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 \(\hbox {kg/hm}^{2}\), the effect of increasing the amount of straw mulch on daily soil water evaporation was small.  相似文献   

2.
田间试验研究了不同覆盖措施对冬小麦农田土壤含水量及小麦生长状况和水分利用效率的影响.试验包括4个处理:作物生育期秸秆覆盖600 kg/ha(M600)、秸秆覆盖300 kg/ha(M300)、地膜覆盖(PM)和无覆盖处理(CK).结果表明:覆盖处理下的土壤贮水量均高于不覆盖,M600处理能显著增加土壤含水量(0~1m和...  相似文献   

3.
膜下滴灌微区环境对土壤水盐运移的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于膜下滴灌特有的"膜中"、"膜间"、"膜边"、"膜外"微区环境,利用2011—2013年田间对比试验方法获取的5 960个数据,运用柯布-道格拉斯模型,构建膜下滴灌环境土壤层次、灌水定额、土壤水分、气温、蒸发综合因素与土壤水盐关系及影响效应分析模型.结果表明,在气候干旱、蒸发强烈灌区,地膜覆盖与滴灌结合的地表介面灌溉形式下,土壤水盐具有水平方向由"膜中"向"膜边"地表裸露区定向迁移,垂直方向土壤水盐则由下向上层运移且趋于"膜外"边界积累的趋势,尤其是气温与蒸发因素交互作用,推进膜下滴灌土壤水盐在地膜覆盖与土壤裸露区域空间运移,研究结果进一步揭示了膜下滴灌"土壤水盐定向迁移"形成机理,为膜下滴灌土壤水盐地表排放模式应用提供了依据.  相似文献   

4.
The importance of flavonoids in rhizosphere–legumes symbiosis has been recognized as critical. However, the limited data are available about their impact on soil microbial communities. In rhizosphere, it remains unclear whether flavonoids, mulch or their joint effects influence on soil microbial diversity and enzymes activity. Therefore, in this study, the effects of flavonoids and straw mulching on soil microbial functional diversity, fungi abundance and enzymes activity (dehydrogenases, protease, acid phosphomonoesterase) in pea rhizosphere were evaluated. The field study was conducted in Lublin, Poland (51°15′N, 22°35′E), on a Haplic Luvisol. Flavonoids were applied on pea seeds and after sowing soil surface was covered with straw mulch. In soil rhizosphere sampled three times during the vegetative period of pea were determined: dehydrogenases, protease and acid phosphomonoesterase activities, metabolic potential of soil bacteria, microbes number and predominant fungal species. The results showed that dehydrogenases and protease activities were significantly increased with time during pea growing season. Significant increase in dehydrogenases activity was observed after flavonoids and mulch influence. There was no impact of studied factors on acid phosphomonoesterase. The effects of flavonoids and mulch on biodiversity indices were related to sampling terms. Straw mulching increased potentially antagonistic fungi in pea rhizosphere. The results of this study can be useful in understanding the effects of flavonoids and mulch on microbial activity and dynamics in pea rhizosphere which is very important in soil quality and crop production.  相似文献   

5.
田间覆盖保墒技术措施的应用与研究   总被引:4,自引:0,他引:4       下载免费PDF全文
介绍了国内外的田间覆盖技术措施应用及理论研究现状。目前,研究土壤水热运移模型大致可分为等温模型和非等温模型两大类。分析和论述了两类模型代表模式及其特点;详细论述了地面覆盖对土壤表面水、汽、热状况的影响,以及不同覆盖材料,不同覆盖方式对土壤水热运移的影响;简述了二维土壤水热耦合模型及数值模拟计算。在总结已有研究成果基础上,提出了需进一步探讨的问题。  相似文献   

6.
冬小麦田咸水灌溉与土壤盐分调控试验   总被引:6,自引:0,他引:6  
利用浅层咸水灌溉,可使浅层咸水分布区无效降水转化为有效水资源,缓解北方水资源紧缺的矛盾;通过王瞳试验场进行的咸水灌溉与土壤盐分调控试验表明,利用3g/L左右的微咸水连续灌溉5a,根层土壤溶液浓度未超过小麦的耐盐能力,且作物增产;多年盐分变化趋势为:1994-1997年1m深度内土壤总含盐量在一定范围内波动,总体变化不大,连续干旱的1997-1998年略呈上升趋势;麦秸覆盖和施有机肥能减少根层土壤盐分,对土壤盐分具有有利的调控作用,具有增产效果。  相似文献   

7.
Fresh water supplied are often limited in mainland China, reducing agricultural productivity. However the use of straw mulch is the main management technique for agronomic water saving. This paper investigates the movement of soil water under straw mulch compared to a non-mulch test plot. Results demonstrated that straw mulch effected soil water movement primarily during drought periods and throughout shallow soil (i.e. depths of less than 200 cm). The soil moisture and soil water potential at the mulch test plot in drought period are both higher than that of contrast test plot, and along with increasing soil depth, the straw mulch effect weakens. When evaporation is dominated by surface evaporation, straw mulch will effectively restrict the evaporation of soil water; when evaporation dominated by vegetation transpiration, the straw mulch promotes the transpiration of vegetation. In drought periods, straw mulch is not effective for deep soil water infiltration, but is advantageous for soil water utilization of mid- and shallow- soils (0-120 cm), however the infiltration speed rate of straw mulch point during high water period is higher than that of contrast plot. This paper highlights the importance of good management practices of agricultural land in order to limit soil water losses, which is essential when water is such a limited resource.  相似文献   

8.
随着邻苯二甲酸酯类(PAEs)增塑剂在塑料大棚、地膜覆盖栽培技术中的广泛应用,我国农业土壤中已普遍存在邻苯二甲酸二乙基己酯(DEHP)污染问题。针对我国中西部岩溶高原区农业土壤中存在的DEHP环境问题,本文选取云南岩溶高原区的红壤及烟草地膜作为研究对象,通过田间试验模拟覆膜土壤环境,并采用气相色谱-质谱分析法检测农膜、土壤介质中DEHP含量,定量研究了地膜中DEHP的释放及其在覆膜土壤中的浓度分布特征。结果表明:覆盖于原状土壤上的地膜,其DEHP释放量最大,均值为13.57mg/kg;覆盖于加生物抑制剂土壤上的地膜,其DEHP释放量略高于未覆土壤地膜,前者DEHP平均值为10.83mg/kg,后者为10.77mg/kg;地膜中DEHP的释放表现为缓慢释放和集中陡升两个释放段,总体释放量随时间的延长而增加。两组覆膜土壤中DEHP的检出浓度范围分别为0.17~3.74mg/kg(原状土)、0.34~4.29mg/kg(加生物抑制剂土壤),在国内外覆膜农田土壤PAEs类化合物检出浓度范围内;土壤中DEHP含量具有随时间呈先增后减的变化规律。相关性分析表明土壤中DEHP主要来自于地膜中DEHP的释放。研究认为在短周期内岩溶高原红壤不会出现DEHP的累积,合理安排农作物的覆膜种植可有效削减土壤的有机污染。  相似文献   

9.
The combination of ecological fragility and agricultural activity in the loess hilly–gully regions of western China has received broad environmental concerns. In this region, rainfall and soil moisture can fatally influence crop production under dry land farming. In this study, field experiments were conducted, from March 2001 to September 2005, to demonstrate the variation of soil moisture and fertilizer contents at different depths in slope and terraced lands, and to evaluate the ecological impacts and economic benefits in the terraced land of Loess Plateau. The results of both field test and Grey model (GM) calculation show that the terraced land, as compared to the sloping land, in the agricultural area of the Loess Plateau tends to store and retain much water, promoting more favorable interactions between water and fertilizer. During the months from March to June of the year with less rainfall, the water supply for crop growth is mainly derived from the deep storage of soil moisture accumulated from July to September of the previous year. The field experiments indicate that the crop yield of the 3-year-old terraced lands was 27% higher than that of the sloping lands with slopes greater than 10°, and that the crop yield can increase by 27.07 to 52.78% in the following cultivation years. In particular, potato was found to be more drought-resistant than winter wheat, thus it is more suitable for the arid and semi-arid Loess Plateau regions.  相似文献   

10.
To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dynamic regularities under different mulching patterns by virtue of depressimeter and neutron probe, analyzed the characteristics of soil water content and storage in different depths and seasons under the long-term straw mulching. The results showed that the long-term straw mulching can keep the soil moisture conservation of the deep, while decreased the shallow. (1) The long-term straw mulching can changed the type of soil water movement. If no straw mulching, the type is mainly evaporation-infiltration. And with straw mantle the type would change into infiltration. The number of zero flux plane would be reduced or absent. (2) The long-term straw mulching can increase the soil water reserves of the whole soil profile with the depth between 0 cm and 220 cm. But the soil water content of the layer from 30 cm to 80 cm decreased and the soil water content of the layer from 80 cm to 220 cm increased instead., The effect of soil moisture conservation on winter wheat is not obvious; (3) With no straw mulching, the depth of infiltration recharge by rainfall or irrigation is shallower than 80 cm. In a straw mulching, the influence depth is can extend to 120 cm; (4) With no straw mulching , there is a deep layer on the depth of 220 cm between March and June, while this layer will disappear with a long-term straw mulching.  相似文献   

11.
It is generally difficult to quantify exactly the freshwater going in or out of the coastal watersheds along the northern Adriatic Sea because, on one hand, excess water is drained and pumped into the sea to prevent flooding but, on the other hand, water is brought onto the land from far away for irrigation. Fragmentation of water authorities makes it difficult to collect all the necessary information. Climate change and increasing salinization of the coastal aquifers make it imperative, however, to better know the quantities of freshwater involved in these small basins. The water budget of a small coastal agricultural watershed along the Adriatic Sea in Italy (The Quinto Basin near Ravenna) is presented here considering different land uses. The evaporation of open water and the evapotranspiration of wetlands, pine forests, bare soil and irrigated agriculture are calculated based on the Penman–Monteith equation and the Cropwat program. The current water budget is based on average climate data from 1989 to 2008 and drainage and irrigation data. Predictions for future evapotranspiration, net irrigation and hydrologic deficit are calculated with climate data from IPCC (The Fourth Assessment Report (AR4) 200, Climate change 2007). From the study results, the soil type may determine whether or not a crop will need more or less irrigation in the future. Regulations on land use should therefore consider which crop type can be grown on a specific soil type. Water budget analysis in scenarios A1b and A2 both show an increase of water deficits in the summer and an increase of water surplus in the winter. This is explained by the fact that a larger percentage of the rain will fall in winter and not during the growth season. The open water evaporation will decrease under future climate scenarios as a result of increased relative humidity in winter and decreased wind velocity. This may have a positive effect on the water cycle. The current irrigation is very abundant, but has beneficial effects in contrasting soil salinization and saltwater intrusion into the coastal aquifer.  相似文献   

12.
Plastic film mulching is widely employed to improve crop yields. Mulching for the entire crop growth period is a widespread practice. However, a shorter plastic film mulching duration is suggested for obtaining larger grain yield recently. To quantify the effects of plastic film mulching durations on soil erosion and nutrient losses, a three-treatment experiment with three replicates was constructed in field. The designed treatments were control (M0, non-mulched treatment), mulching from sowing to the end of the peanut pod-setting stage (M1) and pod-filling stage (M2). Plastic film mulching significantly increased the mean runoff and sediment yield. With film mulching, the mean runoff and soil losses among M1 and M2 treatments had no significant difference, and significantly larger than that in M0 treatment. After mulching removing, there were no significant differences between the mean runoff and soil losses of M0 and M1 treatments. Compared with the M2 treatment, the M0 treatment had significantly reduced mean runoff and soil losses of all the events. Non-mulching increased the total nitrogen (TN) and total phosphorus (TP) losses. The M0 treatment had the highest TN (23.0 mg m?2) and TP (3.02 mg m?2) losses in the three treatments. The M2 treatment significantly reduced the TN and TP losses. In conclusion, mulching from sowing to the end of pod-setting stage was suggested as the appropriate choice for the largest yield and less soil erosion. But, some soil conservation measurements should be taken in furrow areas to effectively reduce soil erosion, under the condition of film mulching.  相似文献   

13.
张沛  龙爱华  海洋  邓晓雅  王浩  刘静  李扬 《冰川冻土》2021,43(1):242-253
农业用水是人类开发利用水资源以及影响生态系统的主要扰动因素,科学定量农业用水是合理配置与调控区域水资源的基础工作。传统的农业用水统计只是记录了可测量的用水量,而水足迹则完整刻画了人类活动对水资源系统的压力表现。从水足迹理论出发,采用Cropwat软件计算了新疆1988—2015年近20种农作物生产水足迹总量,并利用Mann-Kendall趋势和突变检验的方法,分析了28年间新疆农作物水足迹的时空变化,探讨了农作物水足迹驱动因素及机制。结果表明:新疆农作物水足迹在28年间总量增加了256%;水足迹序列在2005年前后增长出现了突变,后一阶段增长率是前一阶段的3倍以上;从农作物水足迹中蓝水足迹与绿水足迹的构成看,农作物绿水足迹呈持续增加趋势,但其在农作物水足迹总量中的比例略有下降。进一步分析表明,农业种植规模的快速扩张是新疆农作物水足迹大幅度增加的根本原因,而脱贫致富、扶贫攻坚等经济发展需求下的政策(战略)支持是农业种植规模(灌溉面积)持续快速增长的核心驱动力。通过探究农作物水足迹的变化及原因,揭示了新疆农业用水的时空变化,以及农作物水足迹与国家、地方政策和社会活动之间的关系,可为深入解析新疆农业增长与水资源开发利用及生态环境之间的时空演化关系和相关决策与政策制定提供参考。  相似文献   

14.
Inadequate moisture supply is one of the important factors limiting crop yields in the world. Increasing the efficiency of moisture available has an important role on the crop-producing capacity of the soil. This paper presents the results of the laboratory experiments conducted to assess the influence of two mulches of windy sand and light expanded clay aggregate (LECA) with three thicknesses (1, 3, and 4 cm) on soil surface in soil columns. Loamy soil was taken from the experimental site in Bayaz of Rafsanjan (a city in Kerman province in Iran). These experiments were done as completely randomized design with two treatments of mulches (windy sand and LECA) and tree replicates. The results show that the columns of treated soil with mulches had lower evaporation as compared to the control. The rate of evaporation from the soil surface of columns was decreased with increasing the thickness from 1 to 4 cm of each of the two mulches. The LECA mulch was more effective in reducing evaporation from the soil surface than the windy sand mulch with the same thicknesses. The most effective among the thicknesses for mulches was 3 cm.  相似文献   

15.
为探讨农田在不同调控措施下的土壤水蒸发量,以衡水试验场为例,以土壤水流动系统为指导,设计沟播盖腐熟秸秆、沟播不盖秸秆、盖膜穴播、平播对照4种不同调控措施下的田间试验,运用土壤水分均衡原理和土壤水分通量法,计算了不同调控措施下的土壤水蒸发量.结果表明,盖膜穴播田块的土壤水蒸发量最小,沟播盖腐熟秸秆次之,沟播不盖秸秆最大,说明盖膜穴播的土壤水分调控效果最好,而秸秆覆盖的效果优于不盖秸秆.  相似文献   

16.
17.
基于CROPWAT的宁夏虚拟水战略适宜性初步评价   总被引:1,自引:0,他引:1  
齐娅荣 《水文》2020,40(1):58-63
虚拟水战略为解决水资源短缺问题提供新的想法与措施。借助CROPWAT8.0软件,利用CROP数据库、CLIMATE2.0数据库和《宁夏统计年鉴》等资料,对宁夏三大产业用水进行评价,分析了农业虚拟水战略的可行性;通过计算典型农作物虚拟水含量筛选虚拟水战略作物,设定六种不同方案进行适宜性情景模拟。结果表明,在保障粮食安全基础上,春小麦可作为农业虚拟水战略首选优势作物,减少或替代种植可一定程度上增加效益,减少用水量。  相似文献   

18.
李荣  陈琳  费良军 《地下水》2019,(1):72-75
本文采用正交试验,研究了防渗技术、微咸水利用方式对温室膜下滴灌乳瓜产量及品质的影响。结果表明,一定矿化度的微咸水灌溉会增加作物土壤根系层含盐量和阻碍作物根系吸水,在灌溉方式和灌水定额一定的情况下,虽然全塑料薄膜防渗保水效果强于四周塑料薄膜+底部粘土防渗,但是四周塑料薄膜+底部粘土防渗透气性好,土壤呼吸作用强,在高温时可以及时调节土壤温度,并有利于乳瓜根部呼吸和生长,使其光合速率升高,有助于乳瓜水分和干物质积累,从而获得增产。  相似文献   

19.
Rising saline shallow groundwater and associated soil salinization problems are widespread especially in arid and semiarid areas. There have been numerous studies on groundwater-associated salinity, but more information is required on the effects of groundwater frequent and high fluctuations on soil salinization. In the present study, laboratory experiments and numerical simulations using HYDRUS-1D model were carried out for this purpose. The experimental and modeling results showed that groundwater fluctuation caused not only the accumulation of more salt in the soil profile compared to stable groundwater, but also an enhancement of the mechanism. Water table fluctuation induced a much greater spreading of the bromide (Br) tracer within the column than the constant water table. The Br content was on average five orders of magnitude greater under a fluctuating water table than under a constant one. Further, the numerical simulations showed that an increase in the groundwater fluctuation frequency brought about an increase in soil surface salinization under the same evaporation boundary conditions. Additional simulations with HYDRUS-1D were used to study the effects of various management strategies on soil salinization induced by shallow groundwater. Hence, by reducing the evaporation rate through the application of surface mulching, a significant reduction of salt concentration at the soil surface was observed. Moreover, frequent irrigations with small quantities were effective to reduce soil surface salt accumulation induced by saline shallow groundwater.  相似文献   

20.
In drylands, groundwater is often the sole source of freshwater for industrial, domestic and agricultural uses, while concurrently supporting ecosystems. Many dryland aquifers are becoming depleted due to over-pumping and a lack of natural recharge, resulting in loss of storage and future water supplies, water-level declines that reduce access to freshwater, water quality problems, and, in extreme cases, geologic hazards. Conservation is often proposed as a strategy for managing groundwater to reduce or reverse the depletion, although there is a need to better understand its potential effectiveness and benefits at the local scale. This study assesses the impact of water-conservation planning strategies on groundwater resources in the Wadi El Natrun (WEN) area of northern Egypt. WEN has been subjected to groundwater depletion and quality degradation since the 1990s, attributed to agricultural and industrial groundwater usage. Initiatives have been proposed to increase the sustainability of the groundwater resource in the study area, but they have yet to be evaluated. Simultaneously, there are also proposals to increase the extent of arable land and thus demand for freshwater. In this study, three water management scenarios are developed and assessed to the 2060s for their impact on groundwater resources using a hydrogeologic model. Results demonstrate that demand management implemented through an optimized irrigation and crop rotation strategy has the greatest potential to significantly reduce risk of groundwater depletion compared to the other two scenarios—“business as usual” and “30% water-use reduction”—that were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号