首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m?2 h?1/mg C produced m?2 h?1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.  相似文献   

2.
Macroalgal biomass and competitive interactions among primary producers in coastal ecosystems may be controlled by bottom-up processes such as nutrient supply and top-down processes such as grazing, as well as other environmental factors. To determine the relative importance of bottom-up and top-down processes under different nutrient loading conditions, we estimated potential amphipod and isopod grazer impact on a dominant macroalgal species in three estuaries in Waquoit Bay, Cape Cod, Massachusetts, that are subject to different nitrogen loading rates. We calculated growth increases and grazing losses in each estuary based on monthly benthic survey data of macrophyte biomass and herbivore abundance, field grazing rates of amphipods (Microdeutopus gryllotalpa andCymadusa compta) and an isopod (Idotea baltica) on the preferred and most abundant macroalga (Cladophora vagabunda) and laboratory grazing rates for the remaining species, and in situ macroalgal growth rates. As nitrogen loading rates increased, macroalgal biomass increased (3×), eelgrass (Zostera marina) was lost, and herbivore abundance decreased (1/4×). Grazing rates increased with relative size of grazer (I. baltica > C. compta > M. gryllotalpa) and, for two of the three species investigated, were faster on algae from the high-nitrogen estuary in comparison to the low-nitrogen estuary, paralleting the increased macroalgal tissue percent nitrogen with nitrogen load. Macroalgal growth rates increased (2×) with increasing nitrogen loading rate. The comparison between estimated growth increases versus losses ofC. vagabunda biomass to grazing suggested first, that grazers could lower macroalgal biomass in midsummer, but only in estuaries subject to lower nitrogen loads. Second, the impact of grazing decreased as nitrogen loading rate increased as a result of the increased macroalgal growth rates and biomass, plus the diminished abundance of grazers. This study suggests the relative impact of top-down and bottom-up controls on primary producers varies depending on rate of nitrogen loading, and specifically, that the impact of herbivory on macroalgal biomass decreases with increasing nitrogen load to estuaries.  相似文献   

3.
Three sequential hurricanes in the fall of 1999 provided the impetus for assessing multi-annual effects on water quality and phytoplankton dynamics in southwestern Pamlico Sound, North Carolina. Two and a half years of post-hurricane data were examined for short- and long-term impacts from the storms and >100 year flooding. Salinity decreased dramatically and did not recover until May 2000. Inorganic nitrogen and phosphorus concentrations were briefly elevated during the flooding, but later returned to background levels. Dissolved organic carbon concentrations declined through the whole study period, but did not appear to peak as was observed in the Neuse River estuary, a key tributary of the Sound. Light attenuation was highest in the fall to spring following the storms and was best correlated with chlorophylla concentrations. Phytoplankton biomass (chla) increased and remained elevated until late spring 2000 when concentrations returned to pre-storm levels and then cycled seasonally. Phytoplankton community composition varied throughout the study, reflecting the complex interaction between physiological optimal and combinations of salinity, residence time, nutrient availability, and possibly grazing activity. Floodwater advection or dilution from upstream maxima may have controlled the spatial heterogeneity in total and group-specific biomass. The storms produced areas of shortterm hypoxia, but hypoxic events continued during the following two summers, correlating strongly with water column stratification. Nitrogen loading to the southwestern sound was inferred from network analysis of previous nitrogen cycling studies in the Neuse River estuary. Based on these analyses, nutrient cycling and removal in the sub-estuaries would be decreased under high flow conditions, confirming observations from other estuaries. The inferred nitrogen load from the flood was 2–3 times the normal loading to the Sound; this estimate was supported by the substantial algal bloom. After 8-mos, the salinity and chla data indicated the Sound had returned to pre-hurricane conditions, yet phytoplankton community compositional changes continued through the multi-year study period. This is an example of long-term aspects of estuarine recovery that should be considered in the context of a predicted 10–40 yr period of elevated tropical storm activity in the western Atlantic Basin.  相似文献   

4.
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012  相似文献   

5.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

6.
Hydrology and nutrients have been indicated as the main driving factors acting on phytoplankton biomass and composition in estuarine systems, although grazing may occasionally have some influence. In order to identify these factors over temporal and spatial scales, we analyzed physical, chemical, and biological properties of a tropical river-dominated estuary during the dry and rainy seasons. As far as we know, this is the first time that the functional groups approach has been used to analyze the changes in phytoplankton composition in an estuary. This recent framework is based on the tolerances and sensitivities in relation to environmental conditions of groups of species, which are labeled by alpha-numeric codes (Reynolds et al., J. Pl. Res. 24:417–428, 2002). In the estuary of Paraíba do Sul River, all phytoplankton groups were represented by freshwater organisms, indicating the strong influence of the river. However, remarkable shifts in composition and biomass occurred from the low to high flushing seasons, due much more to the river discharge than to nutrient availability. The overall results showed no nitrogen, phosphorus, or silica limitation to phytoplankton growth (mean values: dissolved inorganic nitrogen?=?30.5 µM, soluble reactive phosphorus?=?1.45 µM, and silica?=?208.05 µM). The higher river flow supports a lower phytoplankton biomass composed mainly of nanoplankton (<20 µm) fast-growing functional groups, which are able to maintain biomass even in high flushing conditions (X1), or large heavy organisms, such as some heavy diatoms of group P, which are able to be in suspension in shallow and turbulent systems. The lower river flow led to the coexistence of large organisms (>20 µm) of the groups P and F, which include slow-growing populations typically found in mesotrophic lakes. Although the functional group approach was originally developed for temperate lakes, our data support this approach for a tropical estuarine environment.  相似文献   

7.
We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.  相似文献   

8.
Observations of the composition and rate of input of organic matter to the sea floor were made at three locations in lower Cook Inlet, Alaska, during five cruises taken in the spring and summer of 1978. Total particulate, plant pigment, carbon, nitrogen, fecal pellet, and phytoplankton cell fluxes, inferred from sediment trap samples, were related to algal biomass and production in overlying waters. A daily average of 7.5% of the phytoplankton biomass was lost to the bottom. Of this loss, 83% was attributable to zooplankton grazing and fecal pellet production. At the three sampling sites, an average of 39 g C m?2 (range of 17–60 g C m?2, was sedimented to the bottom between May and August. This carbon flux represented an average of 12% of the total primary production measured for that time period. Kachemak Bay eastern arm of the inlet, is identified as an extremely productive embayment in which large amounts of organic matter were transferred to the sea floor.  相似文献   

9.
The effect of nutrient enrichments on natural phytoplankton assemblages was examined in six experiments conducted from June to October 1992. Short-term (4 d to 7 d) nutrient enrichment bioassays were incubated in situ in Padilla Bay, a slough-fed estuary in northern Puget Sound, Washington. Ammonium additions (15 μM) significantly (p<0.001) stimulated phytoplankton biomass accumulation during all six experiments. In two experiments, nitrate additions (15 μM) significantly stimulated accumulation of phytoplankton biomass during October, but not September. Addition of phosphate (1.0 μM) or silicate (15 μM) alone did not stimulate phytoplankton biomass accumulation during any of the experiments. In most experiments, phytoplankton response was greatest in combination treatments of ammonium and phosphate. Dissolved inorganic nutrient concentrations in the containers decreased during all incubations, but showed the greatest reduction in treatments receiving nitrogen. Dissolved inorganic nitrogen (DIN) to phosphate (PO4 3?) ratios were below 16∶1 during all experiments, suggesting the potential for nitrogen limitation. In three experiments, the response of photosynthetic nanoplankton (<20 μm) to ammonium additions was compared to that of the total phytoplankton assemblages. Accumulation of nanoplankton biomass exceeded that of the total phytoplankton during two experiments in August but showed no significant response to ammonium additions in October. Results from the bioassays, the low DIN∶PO4 3? ratios, and the reduction in nutrient concentrations in the containers provide evidence for potential nitrogen limitation of phytoplankton production during summer in Padilla Bay.  相似文献   

10.
The introduction of invasive bivalves such as the zebra mussel (Dreissena polymorpha) can have profound effects on aquatic ecosystems, including decreases in phytoplankton biomass and changes in the taxonomic composition of phytoplankton. Zebra mussel introductions have been associated with increased dominance of cyanobacteria, especiallyMicrocystis, but this change may depend on interacting physical, chemical, or biotic conditions. We used a 12-yr record in the Hudson River to explore the relationship between phytoplankton composition and zebra mussel filtration. During this period (1993–2005), the mean July–September filtration rate of the zebra mussel (ZMF) varied by 8-fold, and the mean biovolume of cyanobacteria, which was dominated byMicrocystis, varied from 0 to 4.2 mm3 1−1 and comprised up to 52% of total phytoplankton biovolume. There was a tendency for high cyanobacterial biomass to be associated with low rather than high ZMF. Neither the absolute nor the relative amounts of either total cyanobacteria orMicrocystis were significantly correlated to ZMF alone or in combination with total phosphorus or any other, physical or chemical parameters that we measured. Cyanobacteria dominance and abundance were both strongly correlated to temperature, and over 80% of the among year variance in cyanobacterial dominance could be explained by temperature in a linear model. Temperature in combination with dissolved SiO3 explained 90% of the variation in cyanobacterial dominance. At higher temperatures and lower dissolved SiO3, cyanobacterial abundance increased, at the expense of diatoms that dominated at lower temperatures and a higher SiO3 years. The high explanatory value of temperature is surprising as the variation in temperature among years was relatively low (24.0–26.8°C). The results suggest that event slightly increased temperatures could lead to higher biomass and dominance of cyanobacteria in some aquatic systems.  相似文献   

11.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

12.
During 1995 the phytoplankton in the Swan River were intensively sampled to assess biomass and species composition. Continuous measurements of fluorescence, salinity, and temperature were made weekly during 40 km sampling trips along the estuary and used to map the seasonal progression of the algal biomass. Weekly measurements of primary production were made and used to model net primary production from the vertical distribution of biomass, irradiance, and phytoplankton species composition. Potential nutrient limitation was assessed with “all but one” nutrient bioassays. The results indicate a complex mixture of potentially limiting factors, which vary in time and space. Although the data sequence is short, it suggests a annual succession pattern of diatoms, chlorophytes, diatoms, and finally dinoflagellates and cryptophytes in late summer-autumn. Peak seasonal biomass was observed during January to April. Mean annual chlorophylla biomass was greatest in upstream stations (5–9), where estimates of net primary production rates averaged 1.55 g C m?2 d?1 and gross primary production was 800–1000 g C m?2 yr?1. Potential nutrient limitation was most severe from November to May, although not during January 1995. Based on bioassay results, during the period of greatest potential for nutrient limitation, nitrogen was 15 to 30 times more limiting to biomass development than phosphate. Runoff due to consistent rainfall during winter eventually breaks down stratification and flushes the estuary with low-salinity, nutrient-rich water, producing, a light-limited, nutrient-rich aquatic ecosystem. Timing and magnitude of physical forcing events, mainly rainfall, appear critical in determining the susceptibility of this ecosystem to summer and autumn algal blooms.  相似文献   

13.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

14.
The aim of this study was to elucidate the relative importance of physical versus biological loss processes for the removal of microphytobenthic (MPB) bound nitrogen in a coastal environment at different times of the year via a dual isotope labeling technique. We used 51Cr, binding to inorganic sediment particles but not participating in any biological processes, and 15N–NO3 ?, taken up by the MPB and turned over as part of the MPB nitrogen pool. Retention, down-mixing, and export of 15N were due to both biological and physical processes, so that by comparing retention of the two isotopes, we were able to discern the relative importance of physical and biological processes. The isotope marking was supplemented with measurements of sediment chlorophyll biomass and oxygen fluxes, allowing us to evaluate MPB biomass as well as primary production vs. respiration in the sediment. In spring/early summer, the system was characterized by tight N cycling and high N retention: any remineralized N was immediately taken up and retained in the MPB biomass. In late summer and autumn, the system was still physically stable, but high biological mediated N losses were observed. In early winter, the system was physically dominated due to low MPB biomasses and activity combined with a significant storm event. Our data support the hypothesis that the relative balance between physical and biological processes in determining retention and removal of MPB-bound nitrogen changes seasonally.  相似文献   

15.
The nitrogen and carbon stable isotope ratios (δ15N and δ13C) of the pygmy mussel,Xenostrobus securis, were determined for three estuaries with varying levels of catchment disturbance in northern New South Wales, Australia. The lower Manning River catchment supported the highest human population densities with 3% residential development and some livestock agriculture (41%); the Wallamba River catchment was mostly livestock agriculture (56%) while the Wallingat River catchment was mostly vegetated (79%). Mussels, estuarine particulate organic matter (POM), and livestock and human-derived waste were collected in two stages during the austral summers of 2001–2002 and 2002–2003 for dual carbon-nitrogen stable isotope analysis. The disturbed Manning and Wallamba River catchment mussels were enriched in15N by an average of 3.2‰ and 1.5‰, respectively, compared to the vegetated Wallingat River mussels. Mussel δ13C values ranged from −24.8‰ to −30.3‰ and showed an estuarine gradient becoming enriched with distance downstream within estuaries, but were unable to distinguish patterns in catchment disturbance between estuaries. The δ15N and δ13C values of POM showed a similar pattern to mussels, indicating a direct link between them within each estuary. A multiple regression model of mussel δ15N using the fractions of land used for livestock agriculture and residential development within 5 km zones from river networks to a distance equivalent to a tidal ellipse from sites explained 67% of the variation in mussel δ15N with 95% of the differences lying within 1.6‰ of observed values. Increasing fractions of land used for livestock agriculture depleted mussel δ15N values estimated by the regression equation, indicating the use of cow manure as a nutrient source with a value of 2.0‰. Increasing fractions of land used for residential development enriched estimated mussel δ15N, indicating the use of human-derived waste with a value of 20.8‰. Pygmy mussels are a useful long-term bio-indicator for the effects of anthropogenic catchment disturbance and nutrient enrichment in estuaries.  相似文献   

16.
Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.  相似文献   

17.
The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24 times over the 28-mo period from 1999 to 2001. Water column profiles of temperature and salinity were measured along with surface chlorophyll and surface inorganic nutrient concentrations. Primary productivity was measured at 2 sites on 11 dates, and estimated for the remaining dates and sites using an empirical regression model relating phytoplankton net production to the product of chlorophyll, euphotic zone depth, and daily solar insolation. Freshwater flow into the system varied markedly over the study period with record low flow during 2000, a flood event in March 2001, and subsequent resumption of normal flow. Flushing times ranged from 1 d during the flood to 20 d during the drought. Freshwater input strongly affected surface salinity distributions, nutrient flux, chlorophyll, and primary productivity. The flood caused high turbidity and rapid flushing, severely reducing phytoplankton production and biomass accumulation. Following the flood, phytoplankton biomass and productivity sharply increased. Analysis of nutrient distributions suggested Escambia Bay phytoplankton alternated between phosphorus limitation during normal flow and nitrogen limitation during low flow periods. This study found that Escambia Bay is a moderately productive estuary, with an average annual integrated phytoplankton production rate of 290 g C m−2 yr−1.  相似文献   

18.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   

19.
A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and net export to perform a steady-state analysis over a yearly cycle. The model calculates the fraction of total nitrogen input from land and the atmosphere that is exported and the fraction that is denitrified or lost to other processes within the estuary. The model was tested against data from the literature for 11 North American and European estuaries having a wide range of physical characteristics, nitrogen loading rates, and geographical and climatic settings. The model shows that the fraction of nitrogen entering an estuary that is exported or denitrified can be predicted from the freshwater residence time. The first-order rate constant for nitrogen loss within an estuary, as a fraction of total nitrogen in the water column, is 0.30 mo−1. Denitrification typically accounts for 69–75% of the total annual net nitrogen removal from the water column by processes within the estuary. The model makes explicit the dependence of nitrogen concentration in the water column on the loading rate of nitrogen, water residence time, estuary volume, and the rate constant for loss within the estuary.  相似文献   

20.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号