首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.  相似文献   

2.
Groundwater constitutes the main source of water supply in the High Mekerra watershed of northwestern Algeria. This resource is currently under heavy pressures to meet the growing needs of drinking water and irrigation. This study assesses the geochemical characteristics of groundwater of the High Mekerra watershed at 21 points distributed across the two main aquifers (Ras El Ma and Mouley Slissen) in the region. Hydrochemical facies of Ras El Ma groundwater are dominantly MgCl and CaCl type, while those of Mouley Slissen groundwater are of CaHCO3 type. Principal component analysis shows a strong correlation between groundwater mineralization and Ca2+, Na+, Cl? and SO4 2? ions stemming from the dissolution of carbonates, gypsum and anhydrite. Groundwater mineralization evolves from south to north. Geochemical modeling shows that the High Mekerra groundwater is saturated with respect to calcite and dolomite and undersaturated with respect to gypsum and anhydrite. Nitrate concentrations that exceed the WHO standard (50 mg L?1) at several points are linked to the agro-pastoral activities in this region.  相似文献   

3.
Hydrogeochemistry of groundwater is important for sustainable development and effective management of the groundwater resource. Fifty-six groundwater samples were collected from shallow tube wells of the intensively cultivated southern part of district Bathinda of Punjab, India, during pre- and post-monsoon seasons. Conventional graphical plots were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. Negative values of chloroalkaline indices suggest the prevalence of reverse ion exchange process irrespective of the seasons. A significant effect of monsoon is observed in terms chemical facies as a considerable amount of area with temporary hardness of Ca2+–Mg2+–HCO3 ? type in the pre-monsoon switched to Ca2+–Mg2+–Cl? type (18%) followed by Na+–HCO3 ? type (14%) in the post-monsoon. Evaporation is the major geochemical process controlling the chemistry of groundwater process in pre-monsoon; however, in post-monsoon ion exchange reaction dominates over evaporation. Carbonate weathering is the major hydrogeochemical process operating in this part of the district, irrespective of the season. The abundance of Ca2+ + Mg2+ in groundwater of Bathinda can be attributed mainly to gypsum and carbonate weathering. Silicate weathering also occurs in a few samples in the post-monsoon in addition to the carbonate dissolution. Water chemistry is deteriorated by land-use activities, especially irrigation return flow and synthetic fertilisers (urea, gypsum, etc.) as indicted by concentrations of nitrate, sulphate and chlorides. Overall, results indicate that different natural hydrogeochemical processes such as simple dissolution, mixing, weathering of carbonate minerals locally known as ‘‘kankar’’ and silicate weathering are the key factors in both seasons.  相似文献   

4.
《Applied Geochemistry》2001,16(7-8):745-758
The physical–chemical characteristics of the groundwater in the Baza–Caniles detrital aquifer system indicate that a wide diversity of hydrochemical conditions exists in this semiarid region, defining geochemical zones with distinct groundwater types. The least mineralized water is found closest to the main recharge zones, and the salinity of the water increases significantly with depth towards the center of the basin. Geochemical reaction models have been constructed using water chemistry data along flow paths that characterize the different sectors of the aquifer system, namely: Quaternary aquifer, unconfined sector and shallow and deep confined sectors of the Mio–Pliocene aquifer. Geochemical mass–balance calculations indicate that the dominant groundwater reaction throughout the detrital system is dedolomitisation (dolomite dissolution and calcite precipitation driven by gypsum dissolution); this process is highly developed in the central part of the basin due to the abundance of evaporites. Apart from this process, there are others which influence the geochemical zoning of the system. In the Quaternary aquifer, which behaves as a system open to gases and which receives inputs of CO2 gas derived from the intensive farming in the area, the interaction of the CO2 with the carbonate matrix of the aquifer produces an increase in the alkalinity of the water. In the shallow confined sector of the Mio–Pliocene aquifer, the process of dedolomitisation evolves in a system closed to CO2 gas. Ca2+/Na+ cation exchange and halite dissolution processes are locally important, which gives rise to a relatively saline water. Finally, in the deep confined sector, a strongly reducing environment exists, in which the presence of H2S and NH+4 in the highly mineralized groundwater can be detected. In this geochemical zone, the groundwater system is considered to be closed to CO2 gas proceeding from external sources, but open to CO2 from oxidation of organic matter. The geochemical modeling indicates that the chemical characteristics of this saline water are mainly due to SO4 dissolution, dedolomitisation and SO4 reduction, coupled with microbial degradation of lignite.  相似文献   

5.
A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+–HCO3 in the upper basin to Ca2+–SO4 2– in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.  相似文献   

6.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

7.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

8.
《Applied Geochemistry》1998,13(5):593-606
The comparative geochemical and isotopic study of confined and unconfined Chalk groundwaters of the Paris Basin and the N German Basin proves a significant chemical evolution during groundwater flow from the recharge zones to the deep confined aquifer. Different time dependent geochemical parameters have been tested as dating tools: Cation ratios (Sr2+/Ca2+, Mg2+/Ca2+), N–NO3, noble gas contents as paleotemperature indicators (Ne, Ar, Kr, Xe), radiogenic He, 13C, 14C, 18O, 2H, 3H. Cation ratios and 13C show the importance of incongruent dissolution processes in the Chalk aquifer. Water–rock interactions were taken into account in a multi-step dissolution model to determine radiocarbon groundwater ages. The oldest waters in the confined part of the Paris basin Chalk with maximum 14C ages of 14,000 a B.P. contain pleistocene recharge components as can be shown by a stable isotope depletion and noble gas temperatures significantly lower than in recent groundwaters. Chalk waters at the Lägerdorf site in Northern Germany show a distinct stratification with respect to residence times and hydrochemistry.  相似文献   

9.
The application of combined isotopic and hydrochemical compositions may be useful for evaluating water quality problems in karst aquifers in which it is difficult to distinguish the sources of solutes from the natural background of those due to human activities. Multiple isotopes (δ13C–DIC, δ34S–SO4 2?) and chemical parameters were measured in rainwater, groundwater and sewage in order to elucidate the solute sources and impacts from human activities and natural background in the Laolongdong karst catchment in Chongqing Municipality, SW China. Overall, the dissolution of carbonate rock controls Ca2+, Mg2+ and HCO3 ? content in rainwater and karst groundwater. SO4 2? originated mainly from gypsum dissolution in karst groundwater. Carbonate rocks in the studied site could be dissolved jointly by H2CO3 from the natural CO2–H2O reaction and other acids (organic acids and HNO3) from sewage and soils. Sewage discharge from urban areas and agriculture activities lead to the increase of NO3 ?, PO4 3? and Cl? in karst groundwater. To protect and sustainably utilize the karst aquifer, sewage originating from urban areas must be controlled and treated and the use of fertilizer should be limited.  相似文献   

10.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

11.
《Applied Geochemistry》2004,19(6):937-946
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ18O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10–40.8‰). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ13CDIC ranged from −7.4 to −17.4‰. SO42, Ca2+ and Mg2+ in the water samples ranged from 2–163, 2–6593 and 2–90 mg/l, respectively. The DIC and δ13CDIC indicate both open and closed system carbonate evolution. Combined δ13CDIC and Ca2+, Mg2+, and SO42− suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42−content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ18O, δD and δ13CDIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa.  相似文献   

12.
The aim of the present study is to identify the geochemical processes responsible for higher fluoride (F) content in the groundwater of the Yellareddigudem watershed located in Nalgonda district, Andhra Pradesh. The basement rocks in the study area comprise mainly of granites (pink and grey varieties), which contain F-bearing minerals (fluorite, biotite and hornblende). The results of the study area suggest that the groundwater is characterized by Na+: HCO facies. The F content varies from 0.42 to 7.50 mg/L. In about 68% of the collected groundwater samples, the concentration of F exceeds the national drinking water quality limit of 1.5 mg/L. The weathering of the granitic rocks causes the release of Na+ and HCO ions, which increase the solubility of ions. Ion exchange between Na+ and Ca2+, and precipitation of CaCO3 reduce the activity of Ca2+. This favours dissolution of CaF2 from the F-bearing minerals present in the host rocks, leading to a higher concentration of F in the groundwater. The study further suggests that the spatial variation in the F content appears to be caused by difference in the relative occurrence of F-bearing minerals, the degree of rockweathering and fracturing, the residence time of water in the aquifer materials and the associated geochemical processes. The study emphasizes the need for appropriate management measures to mitigate the effect of higher F groundwater on human health.  相似文献   

13.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

14.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

15.
16.
Groundwater and surface water samples were collected to improve understanding of the Senegal River Lower Valley and Delta system, which is prone to salinization. Inorganic ion concentrations and environmental isotopes (18O, 2H and 3H) in groundwater, river, lake and precipitation were investigated to gain insight into the functioning of the system with regard to recharge sources and process, groundwater renewability, hydraulic interconnection and geochemical evolution. The geochemical characteristics of the system display mainly cation (Ca2+ and/or Na+) bicarbonated waters, which evolve to chloride water type; this occurs during groundwater flow in the less mineralized part of the aquifer. In contrast, saline intrusion and secondary brines together with halite dissolution are likely to contaminate the groundwater to Na–Cl type. Halite, gypsum and calcite dissolution determine the major ion (Na+, Cl, Ca2+, Mg2+, SO4 2− and HCO3 ) chemistry, but other processes such as evaporation, salt deposition, ion exchange and reverse exchange reactions also control the groundwater chemistry. Both surface water and groundwater in the system show an evaporation effect, but high evaporated signatures in the groundwater may be due to direct evaporation from the ground, infiltration of evaporated water or enriched rainwater in this region. The stable isotopes also reveal two types of groundwater in this system, which geomorphologically are distributed in the sand dunes (depleted isotopes) and in the flood plain (enriched isotopes). Consideration of the 3H content reinforces this grouping and suggests two mechanisms of recharge: contribution of enriched surface water in recharging the flood plain groundwater and, in the sand dunes area where water table is at depth between 8 and 13 m, slow recharge process characterized the submodern to mixed water.  相似文献   

17.
The hydrogeochemistry and isotope geochemistry of groundwater from 85 wells in fractured dolomite aquifers of Central Slovenia were investigated. This groundwater represents waters strongly influenced by chemical weathering of dolomite with an average of δ13CCARB value of +2.2 ‰. The major groundwater geochemical composition is HCO3 ? > Ca2+ > Mg2+. Several differences in hydrogeochemical properties among the classes of dolomites were observed when they were divided based on their age and sedimentological properties, with a clear distinction of pure dolomites exhibiting high Mg2+/Ca2+ ratios and low Na+, K+ and Si values. Trace element and nutrient concentrations (SO4 2?, NO3 ?) were low, implying that karstic and fractured dolomite aquifers are of good quality to be used as tap water. Groundwater was generally slightly oversaturated with respect to calcite and dolomite, and dissolved CO2 was up to 46 times supersaturated relative to the atmosphere. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium ranged from ?10.3 to ?8.4 ‰, from ?68.5 to ?52.7 ‰ and from 3.5 TU to 10.5 TU, respectively. δ18O and δD values fell between the GMWL (Global Meteoric Water Line) and the MMWL (Mediterranean Meteoric Water Line) and indicate recharge from precipitation with little evaporation. The tritium activity in groundwater suggests that groundwater is generally younger than 50 years. δ13CDIC values ranged from ?14.6 to ?9.3 ‰ and indicated groundwater with a contribution of degraded organic matter/dissolved inorganic carbon in the aquifer. The mass balances for groundwater interacting with carbonate rocks suggested that carbonate dissolution contributes from 43.7 to 65.4 % and degradation of organic matter from 34.6 to 56.3 %.  相似文献   

18.
Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl? and between Mg2++ Ca2+ and SO4 2??+?HCO3 ?, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)–(SO4 2??+?HCO3 ?) and (Na++ K+)–Cl? with a slope of ?0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.  相似文献   

19.
Groundwater is the most important source of water supply in Iran and understanding the geochemical evolution of groundwater is important for sustainable development of the water resources in Tabas area. A total of 29 samples of groundwater in Tabas area have been analyzed for ions and major elements. Groundwater of the study area is characterized by the dominance of Na–Cl water type. Groundwater was generally acidic to high alkaline with pH ranging from 5.42 to 10.75. The TDS as a function of mineralization characteristics of the groundwater ranged from 479 to 10,957 mg/l, with a mean value of 2,759 mg/l. The Ca2+, Mg2+, SO4 2? and HCO3 ? were mainly derived from the dissolution of calcite, dolomite and gypsum. The Cu, Pb and Zn ions are not mobile in recent pH–Eh, but these conditions controlled dissolved Se, V and Mo in groundwater. The As is released in groundwater as a result of the weathering of sulfide minerals like arsenopyrite.  相似文献   

20.
Study on geochemistry of groundwater occurring at different depths is rarely attempted due to inherent difficulties in sample isolation and lack of significant species variations. Three-dimensional (spatial, temporal and depth-wise) evaluation of water chemistry variations would give holistic picture of aquatic chemistry. In order to fill the knowledge gap the vertical hydrogeochemistry of Penna-Chitravati inter-stream sub-basin is studied.Water samples are segregated into different groups based on water levels of source wells. The group samples pertaining to granite terrain (A to C) does not show much variation for tested parameters as most of the samples fall within 20m water level. In shale aquifers groundwater is progressively less ionized as depth to levels increases (Group D to G). Reduction of EC and Na-Cl along with falling water levels indicates deeper aquifers are free from contamination. Gradual decrease in HCO 3 - with depth substantiates that deeper aquifers are getting less fresh water due to lack of inter connectivity in shale formations. Sodium in groundwater of both the granite and shale aquifers is contributed by weathering of silicate rocks as the Na+/Cl- molar ratio is >1 in many samples. Majority of the samples in both the geological terrains have Ca2+/Mg2+ ratio between 1 to < 2 indicating dolomite dissolution is responsible for Ca2+-Mg2+ contribution. The chemistry of tested water indicate aquifer matrix is responsible for chemical make-up of pore water which was obliterated due to extraneous sources like anthropogenic contamination as Na+, Cl-, NO 3 - and SO 4 2- /HCO 3 - is high in many samples belonging to shallow aquifers. Thermodynamic action in deep aquifers could be responsible for dissimilar water chemistry in aquifers belonging to same geological domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号