首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
鄂尔多斯盆地白垩系含水层沉积学初探   总被引:21,自引:5,他引:16  
“含水层沉积学”是沉积学、水文地质学、油气储层地质学、地球化学等相互交叉综合的产物,是以沉积学、水文地质学理论为基础,以沉积含水层为主要研究对象,以查明地下水赋存和循环条件、地下水系统结构特征、地下水水质成因与分布以及地下水富集规律为主要研究内容,最终服务于地下水资源勘查评价的一门边缘分支学科。含水层沉积学及水文地质综合研究表明,受到沉积相类型及其空间展布的明显控制,鄂尔多斯盆地白垩系地下水赋存、循环、富集条件以及地下水水质分布总体具有北好南差、盆地南部具有下好上差的宏观规律。  相似文献   

3.
Assessment of change in major ion chemistry of groundwater, manifested by hydrochemical facies, is a necessity for sustainable use of the groundwater resources. In this perspective, this article estimates spatial and temporal hydrochemical facies variation in the study area using an integrated approach. The geochemical, isotopic and sedimentary data from the North West Delhi has been used to achieve the objective of the study. It is seen that the spatial groundwater facies variation in the study area correlates with the change in geomorphologic units. Distinct hydrochemical facies for younger and older alluvial plains has been observed. It is seen that geomorphic features such as palaeochannels also influence the groundwater quality of the study area. Further, the temporal hydrochemical facies variations indicate that with time, anthropogenic factors have also impacted the evolution of facies in the study area .  相似文献   

4.
The alluvial aquifer of the Guadalquivir River comprises shallow Quaternary deposits located in the central-eastern part of the Province of Jaén in southern Spain, where groundwater resources are used mainly for crop irrigation in an important agricultural area. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater and river water samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Mg–Ca–HCO3, Ca–Mg–SO4–HCO3–Cl and Na–Ca–Mg–Cl–SO4) were identified. Further interpretation, using R-mode principal components analysis (PCA) conducted with 13 hydrochemical variables, identified two principal components which explain ⅔ of the variance in the original data. In combination with the hydrochemical interpretation, mineralogical analyses of the aquifer sediment together with inverse geochemical modelling using NETPATH showed that dedolomitization (calcite precipitation and dolomite dissolution driven by gypsum dissolution) is the principal hydrochemical process controlling the regional groundwater chemistry. Other processes such as silicate weathering, ion exchange, mixing between river water and groundwater, and agricultural practices also affect the groundwater chemistry.  相似文献   

5.
鄂尔多斯盆地水文地质特征及地下水系统分析   总被引:20,自引:2,他引:18       下载免费PDF全文
鄂尔多斯盆地是我国西北地区东部的一个大型构造沉积盆地,蕴藏着丰富的矿产资源,是我国正在建设 的重要能源基地;鄂尔多斯盆地同时也是一个巨型地下水盆地,赋存相对丰富的地下水资源,将为能源基地建设提 供重要水源。鄂尔多斯盆地是由多种不同类型岩石上下叠置构成的构造沉积盆地,因此它也是一个由不同含水岩 类的多个含水层系统上下叠置构成的巨型地下水盆地。鄂尔多斯盆地总体上构成一个半开启型的地下水盆地,盆 地内不同含水层系统地下水交替循环的方式和深度不同,以寒武系-奥陶系碳酸盐岩类岩溶含水层系统和白垩系 碎屑岩类孔隙-裂隙含水层系统的交替循环深度较大(可达1200~1800m);新生界松散岩类孔隙含水层系统和 石炭系-侏罗系碎屑岩类裂隙含水层系统的交替循环深度较小(一般小于300m)。鄂尔多斯盆地实际上包含了周 边岩溶地下水、白垩系自流盆地地下水和东部黄土区地下水共3个地下水大系统。在各地下水大系统内,又可根 据各自的地质-水文地质结构特征、地下水循环条件以及和地表水系的关系等,再进一步划分成7个地下水系统 及16个地下水亚系统。文章在对鄂尔多斯盆地的地质-水文地质结构特征和地下水循环条件进行分析的基础 上,对整个盆地地下水系统进行初步分析,为盆地地下  相似文献   

6.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

7.
Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca–Na–HCO3–Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca–HCO3-dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).  相似文献   

8.
The Çeltikçi (Burdur) plain is located in the southwest of Turkey and is a semi-closed basin. Groundwater is densely used as drinking, irrigation and domestic water in the plain. Hydrogeochemical processes controlling groundwater chemistry and geochemical assessment of groundwater were investigated in the Çeltikçi (Burdur/Turkey) plain. In this study, groundwater samples for two seasons were analyzed and major ion chemistry of groundwater was researched to understand the groundwater geochemistry. Two major hydrochemical facies (Ca–HCO3 and Ca–Mg–HCO3) were determined in the area. Various graphical plots and multivariate statistical analysis were used for identifying the occurrence of different geochemical processes. In the study area, weathering is one of the key geochemical processes which controlled the solute concentration in groundwater. Chemical indexes such as sodium adsorption ratio, %Na, residual sodium carbonate, magnesium hazard and permeability index were calculated and results show that groundwater is suitable for irrigation purpose except for permeability index values. Concentrations of Mn, NO3 and total hardness exceed the prescribed limits of WHO and are the major limiting parameters of groundwater use for potable and domestic purposes.  相似文献   

9.
潮水盆地铀成矿水文地球化学研究   总被引:1,自引:0,他引:1  
在分析潮水盆地自然地理、地质背景及水文地质特征的基础上,对盆地铀成矿水文地球化学特征进行了探讨。结果表明:潮水盆地为-渗入型自流水盆地,其深层地下水中铀存在形式为UO2(CO3)n^2-2n。;从盆地边缘到盆地中心具有明显从氧化环境到还原环境的水文地球化学分带特征,水中铀经历了由溶滤迁移到还原沉淀的矿化过程;在盆地北缘的照壁山-白芨芨、阿右旗-陶家井地区,西南部的平易-平山湖地区具备十分有利的铀成矿条件和良好的铀成矿远景。  相似文献   

10.
The Upper Yarmouk basin in northern Jordan has become an increasingly important groundwater resource in recent years. Despite this, studies of groundwater recharge and movement in the area are limited, and mostly parts of larger scale regional data syntheses. Detailed analysis of the hydrogeology, hydrochemistry and isotopic data indicate a more complex system than previously presented. Whereas earlier studies suggested that groundwater is derived from a single aquifer, this study suggests abstraction from multiple aquifers. Moreover, faults and lineaments in the area may be causing segmentation and limited flow within individual aquifers. The isotopic and hydrochemical data suggest that local recharge plays a significant role in the hydrogeologic situation in the study area. This appears to be mostly happening in the hilly zone in the central part of the study area.  相似文献   

11.
在系统分析潮水盆地自然地理及地质背景的基础上,通过对前人工作成果的总结和野外现场调查,对盆地水文地质条件,包括地下水类型、地下水动力特征、水源点水文地质属性及水文地球化学特性进行了分析,并得到了对潮水盆地铀成矿水文地质条件的认识.  相似文献   

12.
A methodology for the characterization of deep carbonate aquifers has been developed and applied to El Maestrazgo Jurassic aquifer in Castellón, Spain. Characterization of these aquifer formations, located at more than 300 m deep, consisted of a previous phase of compilation, analysis and synthesis of the existing information about the area, followed by a coordinated combination of different speciality studies: geology, stratigraphy, structural analysis, hydrogeology, hydrochemistry, geophysics and remote sensing. Geological studies included geological mapping, definition of stratigraphical units and facies and structural analysis. The aim of the hydrogeology study was to define aquifer formations, recharge area, aquifer points inventory and groundwater flow directions for the establishment of piezometric and water quality observation nets. Special techniques were applied, like thermal infrared aerial images and the evaluation of submarine groundwater discharge by means of natural radium isotopes. Hydrochemical techniques, including majority elements characterization and stable isotopes (18O, 2H and 3H) determination, allowed classifying hydrochemical facies and establishing a renewal pattern for water within the system. Geophysics was useful in determining the aquifer geometry, the features of the basement and the petrophysical characteristics of the geological formations. Preliminary results show an important tectonic complexity and the possibilities for groundwater uses in the area of study.  相似文献   

13.
Hydrochemical facies in parts of the Nigerian basement complex   总被引:3,自引:0,他引:3  
 Water analyses usually involve large amounts of data that require sorting to aid in interpretation. One method that could be used is the hydrochemical facies diagrams. The hydrochemical facies of groundwater from four drainage basins of the Nigerian basement complex, Ife, Asa, Shika, and Kan Gimi, are evaluated using trilinear and Stiff diagrams similar to methods used in lithofacies and geochemical studies. The hydrochemical facies for the basins studied are influenced, aside from the lithology, by the rainfall and their proximity to the sea. In general, no single cation–anion pair exceeds 50%, hence an appreciable percentage of the groundwater in the study areas is of the nondominant type. Within the overburden aquifer of the basement complex, with limited regional flow, a rainfall of about 1150 mm per annum is arbitrarily set as the boundary between alkaline and saline groundwater. Received: 11 August 1995 · Accepted: 6 November 1995  相似文献   

14.
This article presents the difficulty in identifying the hydrochemical zoning of a semi-confined aquifer, characterised by a relative small spatial differentiation of groundwater chemistry. It is shown that multivariate statistical methods can be used for the recognition and interpretation of the groundwater chemistry distribution in an aquifer. The hydrochemical zonation caused by both natural and anthropogenic processes was identified using factor analyses in combination with a classical interpretation of the hydrogeological material. The interpretation of the groundwater chemistry allows both identification of the aquifer recharge mechanism and verification of the groundwater-flow system.  相似文献   

15.
本文揭示了第三系沉积体系地下水化学的基本特征及其在正向、斜向上的水化学分带性,从古代和现代水文地质条件分析,论证了现代水化学场是遵循浓缩盐化、正向变质和稀释淡化、反向变质两种格局形成演化的,指出第三系地下水现代化学业已演化成熟,并概括了形成演化模式。  相似文献   

16.
The Markanda river basin occupying an area of about 1547 km2 is a part of the alluvial deposits of the Indo- Gangetic plain near the Himalayan foothills in the northwest India. The region is associated with active agricultural activities and makes significant contribution to the country’s agricultural products. Assessment of groundwater quality for irrigation use and hydrochemical evolution of groundwater has been studied. Hydrochemical analysis has been carried out based on concentrations of Ca2+, Mg2+, Na+, K+, Cl, SO4 2−, CO3 2− and HCO3 . Sodium adsorption ratio (SAR), percent sodium (%Na), permeability index (PI) and Trilinear diagram have been studied to evaluate suitability of irrigation use. Hydrochemical evolution has been analyzed based on the Chebotarev sequence and expanded Durov diagram. SAR, %Na and PI results indicate that the groundwater in the basin is suitable for irrigation use. Analysis on Trilinear diagram reveals that hydrochemical facies are dominated by HCO3 - Ca2+- Mg2+ facies indicating that the groundwater is associated with recharge waters percolating through sandstone and limestone rocks which are exposed in the northern part of the basin. Studies based on Chebotarev anion sequence and expanded Durov diagram indicate that the evolution of groundwater belongs to initial to intermediate stage indicating fresh water quality. Thus, the present work reveals that groundwater in the Markanda basin is of good quality and is suitable for all uses including interbasin water transfer in the region.  相似文献   

17.
鄂尔多斯盆地地下水勘查   总被引:28,自引:2,他引:28  
鄂尔多斯盆地矿产资源丰富,生态环境脆弱,地下水资源分布不均,水质复杂。在研究盆地周边岩溶区岩溶发育规律,地下水富集规律,地下水的补给、径流、排泄条件的基础上,将周边岩溶区划分为9个岩溶水系统,进一步划分为25个岩溶水子系统。白垩系自流盆地初步揭示了深部赋存有丰富的地下水,地下水受岩相古地理、地下水补径排条件等控制,水质差异较大。总结了东部黄土覆盖区的地下水类型及开发利用模式。  相似文献   

18.
肥城市岩溶水水化学特征及形成机制   总被引:2,自引:1,他引:1  
张超  张保祥  张吉圣  邸燕 《中国岩溶》2018,37(5):698-707
系统分析地下水长期实测数据,并综合运用数理统计方法、水文地质学、水文地球化学的基本理论,探讨了肥城市水化学特征及其时空分布规律、水化学特征形成机制及水文地球化学过程。结果表明:肥城市地下水水化学类型主要为HCO3·SO4—Ca·Mg型,部分为HCO3·SO4·Cl—Ca·Mg型和HCO3·Cl—Ca·Mg型,主要阴离子由HCO3-向SO42-和Cl-偏移,总溶解固体(TDS)及总硬度呈明显增大趋势;地下水多数离子浓度从补给区经径流区到排泄区越来越高;方解石和石膏的溶滤作用是研究区内地下水水化学成分变化的主要影响因素,同时存在部分的盐岩溶解及阳离子交替吸附作用,而人类活动也是不可忽视的重要影响因素。   相似文献   

19.
本文对鄂尔多斯盆地北部砂岩型铀矿的水文地质条件、含矿含水层的岩性、水文地质结构、水动力条件、水文地球化学特征进行了系统分析和评价,认为地浸水文地质条件良好,可满足地浸采矿要求。针对该地区承压水头小、涌水量偏低的实际情况,结合抽注水连通试验涌水量显著增大的试验结果,提出了加压注水的技术方案,以人工方法提高地下水承压水头,增大涌水量,使之满足地浸采矿要求。  相似文献   

20.
The interaction between surface water and groundwater is not only an important part of the water cycle, but also the foundation of the study on regional water resources quantity. The field hydrogeological investigation and sampling in the Liujiang basin were conducted in the dry season, in April, 2015. The isotopic ratios of hydrogen and oxygen and ion compositions as well as the hydrogeochemical characteristics indicated that the groundwater in the basin was mainly HCO3-Ca and HCO3-Ca·Mg type low salinity water. The groundwater of each region had a unified connection, experiencing the same or similar hydrochemical formation, and the surface water had the same hydrochemical type and source of hydrochemical composition as groundwater. The hydrogen and oxygen isotopic compositions of surface water and groundwater were close to each other, which were mainly from the atmospheric precipitation. In the runoff process, the river water was affected by the evaporation concentration so that the heavy isotopes were slightly enriched. Under the influence of topographical, geological and hydrogeological conditions, the interaction between groundwater and surface water in the basin had obvious segmentation and mutual transformation. The river was recharged by both sides of groundwater in upstream region of Dashi River and Donggong River basin while river water supplied groundwater on both sides of it in downstream region of Dashi River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号