首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于MODIS遥感卫星数据,反演地表温度,研究内蒙古各城市昼夜城市热岛空间分布和季节变化特征。结果显示:(1)白天内蒙古西部地区城市热岛效应弱;中部地区除集宁外,城市热岛出现概率呈对半趋势,没有东部地区城市热岛效应强;东部地区城市热岛效应出现概率最多,以赤峰和通辽尤为显著。夜间全区城市热岛出现的概率比白天大,有些城市达到了100%的现象。(2)内蒙古城市热岛并没有表现出统一季节变化规律,白天,冬季出现城市热岛的有锡林浩特、海拉尔、集宁和通辽;夏季为热岛的城市有呼和浩特、乌兰浩特。夜间,呼和浩特全年热岛,基本全年热岛(除个别月份)的有集宁、通辽、乌海、乌兰浩特和锡林浩特;春季为热岛的是临河;秋季为热岛的有赤峰和东胜;热岛有季节变化规律的是巴彦浩特、海拉尔、包头。(3)呼和浩特夏季6-8月呈现热岛效应;冬季12月依旧表现为热岛,且夜间城市热岛更严重。(4)集宁除5月、7月、12月为冷岛,其余月份为热岛; 7月白天为弱冷岛,夜间为热岛,城郊温差较小;冬季12月白天集宁市区为热岛效应,夜间集宁市区呈现弱冷岛效应。  相似文献   

2.
利用MODIS地表温度数据,计算城市热岛强度指数,分析近15年广州市城市热岛的时空分布特征及演变规律,并结合气象观测数据、社会统计数据定性分析其主要影响因素。结果表明:广州市城市热岛的空间分布受地形地貌影响明显,负热岛区主要分布于森林密集的北部山区,无热岛区主要分布于中部低山丘陵区域,热岛区主要分布于高度城市化的中南部平原区。关于城市热岛的日变化规律,白天热岛区、负热岛区面积均小于夜间,但白天热岛区强度、负热岛区强度大于夜间。关于城市热岛的季节变化规律,冬季热岛区面积最大,热岛强度最小,夏季热岛区面积最小,热岛强度最大;冬季负热岛区面积最小,负热岛强度最小,夏季负热岛区面积最大,负热岛强度最大。对于城市热岛的年际变化规律,近15年来广州市的热岛区、负热岛区占全市总面积的百分比呈上升趋势,无热岛区所占百分比呈下降趋势,人为热排放在城市中心区域的持续增长,加上区内建筑物密度大、植被覆盖度低,导致了热岛区的增加,而北部山区至中部丘陵山区的植被的持续好转,加上地理特征限制了该区域的城市化发展,导致了负热岛区的增加。   相似文献   

3.
南京夏季城市热岛时空分布特征的观测分析   总被引:6,自引:2,他引:4       下载免费PDF全文
利用2010年南京夏季城市热岛三维观测试验资料,分析了南京夏季典型天气条件下城市热岛的时空分布特征。结果表明,南京夏季高温晴天日平均热岛强度达1℃以上,夜间热岛强度稳定且强于白天,热岛分布具有方向性特征并与城市土地利用现状对应较好。白天,城市大气混合层的发展速度和高度均大于郊区;夜间,由于城市大气层结的不稳定及下垫面的粗糙特性,致使城市低空始终存在着一个对流混合层,其高度至少有250 m。城市下垫面高热量储存和强湍流输送的共同作用形成边界层内热岛,热岛强度总体上随高度递减,影响高度在白天约900 m、夜间约300 m。  相似文献   

4.
不同气象条件下廊坊城市热岛效应变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用2005年9月—2008年8月廊坊市区域加密自动站逐时气温资料,采用城、郊气温对比法研究了不同气象条件对廊坊城市热岛效应的影响。结果表明:廊坊城市热岛强度夜间大于白天,但变化幅度白天大于夜间;在四季不同时段存在“城市冷岛”现象。不同气象条件下,廊坊城市热岛强度及变化存在明显差异,晴朗无风时城市平均热岛强度最大,平均强度达1.25℃,阴雨气象条件下城市平均热岛强度最小,平均强度仅有0.10℃。  相似文献   

5.
利用大庆市2个国家站和5个区域气象站的气温、风速、云量资料对大庆市热岛特征进行了分析,结果表明:1991-2012年大庆市热岛强度的年平均值为0.3℃,城市热岛强度较弱,近几年呈显著增强趋势;大庆市热岛效应强度存在冬季强,春秋弱,夏季无热岛效应的特点,热岛效应最强出现在1月份,热岛效应最弱出现在6月份;1-6月热岛强度呈单调下降趋势;7-12月热岛强度呈单调上升趋势;大庆市热岛强度的日变化特征具有夜间强白天弱、快生快消、难以维持24 h的特点;城市热岛效应与云量、风速呈明显的负相关;晴天和较阴天容易出现城市热岛效应,热岛强度晴天强于阴天;城市热岛一般出现在风力1-3级的条件下,当风力3级时,城市热岛消失;在气象条件满足的情况下,充分利用"热岛效应"增加的低云开展人工增雨,可缓解热岛效应给城市带来的不利影响。  相似文献   

6.
重庆市2006年夏季城市热岛分析   总被引:11,自引:1,他引:10  
利用2006年6~8月重庆市区和郊区的26个自动气象站逐小时的观测数据和重庆市地形高程数据等资料,对重庆市夏季的城市热岛效应进行了分析.结果表明,重庆市存在明显的热岛效应,2006年夏季的平均热岛强度值为1.0 ℃,最大日平均热岛强度达1.8 ℃.热岛效应的日变化明显,热岛强度夜间强,白天弱,2006年夏季夜间平均热岛强度为1.4 ℃,夜间最大达到了2.6 ℃,热岛效应加重了市区夜间的高温热害.高温干旱的出现主要影响夜间的热岛效应,使夜间的平均热岛强度增加了约0.7 ℃.通过GIS空间化表明,主城区的温度受地形和城市布局的双重影响,高温中心位于城区沿江一带.热岛效应受天气系统影响强烈,当有天气过程时,热岛效应将明显减弱;而在稳定的晴热天气背景下,热岛效应最明显.  相似文献   

7.
张丽  刘俊  叶丹 《陕西气象》2022,(2):63-68
利用2010-2019年宜昌研究区2、5、8月和11月晴空天气的MODIS地表温度产品,结合GIS技术,分析热岛效应昼夜、季节和年际变化特征.结果表明:(1)热岛空间分布受地形地貌影响较大,热岛区主要分布在主城区至东南部平原地带;(2)热岛区和冷岛区面积白天均多于夜间,热岛强度白天强于夜间;(3)夏季热岛区面积达到最大...  相似文献   

8.
本文首先采用模糊c-均值聚类法和剔除法,筛选出用于计算绵阳城市热岛强度的10个城市站和15个郊区站,然后利用这25个自动气象站的逐时气温资料,分析2018年绵阳城市热岛效应不同时间尺度的变化特征。结果表明:2018年绵阳存在城市热岛效应,平均热岛强度为0.64℃,表现为弱热岛等级;四季热岛效应冬季最强,其次是春季,夏季和秋季相当;逐月热岛强度3月最大、7月最小;绵阳城市热岛效应存在明显的日变化,热岛强度夜间大于白天,日最大热岛强度几乎均出现在晚上。   相似文献   

9.
利用2000-2010年MODIS地表温度产品影像,结合DMSP/OLS夜间灯光数据,分析了成都地区夏季城市温度场及其城市热岛变化的分布特征及其演变规律。结果表明:随着城市化加快,成都地区夏季热环境发生了较大变化,整个区域以中温区向次高温区转换为主。成都地区热岛效应昼夜变化较大:白天热岛面积不断增大,与周围卫星城热岛连成一体,2000年和2010年城市热岛对区域的增温贡献分别为0.13℃和0.29℃,变化量达0.16℃,夜间并不存在大面积强热岛区。旧城区内城市热岛面积有所增加,但不显著,城市扩展区内热岛的规模显著增大,2010年较2000年新增强热岛区域面积166.43 km2,变化幅度达54%。高城市化水平的成都市地区的日较差相对于周边低城市化水平地区明显减少。同时,城市热岛还与人口的平方根具有很好的正相关关系,成都地区非农业人口规模每增长100万人,热岛效应强度增加0.4℃。  相似文献   

10.
廊坊市城市热岛效应的昼夜变化特征分析   总被引:1,自引:0,他引:1  
利用2005年9月~2008年8月廊坊市区域加密自动站逐小时气温资料,采用城、郊气温对比法研究了廊坊城市热岛效应,结果表明:廊坊城市热岛强度夜间大于白天,但变化幅度白天大于夜间,但在四季不同时段也存在"城市冷岛"现象.不同气象条件下,廊坊城市热岛强度及变化存在明显差异,晴朗无风时城市平均热岛强度最大,平均强度达1.25℃,阴雨天气条件下城市平均热岛强度最小,平均强度仅有0.10℃.  相似文献   

11.
城市环境气候图的发展及其应用现状   总被引:1,自引:0,他引:1       下载免费PDF全文
城市环境气候图最初于20世纪70年代由德国气候研究者开发制作,通过近40年的发展,目前在世界范围内已有20个国家开展了相关研究与应用项目,从而为改善城市气候环境与提高人居生活条件提供决策依据。该文首先对城市环境气候图的发展及其制作方法进行了一个总体性的回顾,然后选取德国、日本和中国香港地区的研究案例用以考察目前该领域研究和应用现状与存在问题,进一步详细探讨了未来发展的方向,最后指出了在我国城市化进程中为应对诸多气候环境问题所迫切需要开展的相关研究问题。  相似文献   

12.
城市气候效应研究进展   总被引:4,自引:0,他引:4  
城市是人类社会发展的必然产物.随着城市的快速发展,城市气候效应凸显,并对社会经济可持续发展和人体健康等造成影响.基于国内外已有的研究成果,综述了城市气候效应,包括城市热岛效应、雨岛效应、混浊岛效应、于岛效应和雷暴岛效应的研究历史、现状及其与城市化、天气气候变化的相互关系,并对未来城市气候效应的研究方向及技术方法进行了展望.  相似文献   

13.
通过梳理2018年8月在美国纽约举行的第十届城市气候国际会议主要研究成果,分类汇总了城市气象研究的最新国际进展与发展趋势,包括城市气候过程、城市环境下气候变化适应与应对、气候条件下城市规划和管理、最新城市气象探测技术、城市环境数值模拟、大城市气候、城市遥感、城市地区极端天气等方面。在此基础上,根据我国城市化发展特性,探讨了我国城市气象研究的未来发展方向。  相似文献   

14.
珠江三角洲都市群城市热岛效应初步研究   总被引:49,自引:8,他引:41  
曾侠  钱光明  潘蔚娟 《气象》2004,30(10):12-15
近十年来 ,珠江三角洲都市群热岛效应全面形成 ,年平均热岛强度由 1 983年前的 0 1℃上升到 1 993年的 0 5℃。珠江三角洲都市群热岛强度呈明显的季节变化和日变化 ,1 1月份热岛强度最强 ,4月份最弱 ,就年平均而言 ,夜间的热岛强度大于白天。珠江三角洲都市群热岛强度空间分布呈中间强周围弱的分布格局 ,与各地的经济活动密切相关 ,热岛强度强的地方均为广东经济活动最活跃的地区。  相似文献   

15.
To evaluate the influence of urban non-uniformity on precipitation, the area of a city was divided into three categories (commercial, high-density residential, and low-density residential) according to the building density data from Landsat satellites. Numerical simulations of three corresponding scenarios (urban non-uniformity, urban uniformity, and non-urban) were performed in Nanjing using the WRF model. The results demonstrate that the existence of the city results in more precipitation, and that urban heterogeneity enhances this phenomenon. For the urban non-uniformity, uniformity, and non-urban experiments, the mean cumulative summer precipitation was 423.09 mm, 407.40 mm, and 389.67 mm, respectively. Urban non-uniformity has a significant effect on the amount of heavy rainfall in summer. The cumulative precipitation from heavy rain in the summer for the three numerical experiments was 278.2 mm, 250.6 mm, and 236.5 mm, respectively. In the nonuniformity experiments, the amount of precipitation between 1500 and 2200 (LST) increased significantly. Furthermore, the adoption of urban non-uniformity into the WRF model could improve the numerical simulation of summer rain and its daily variation.  相似文献   

16.
合肥市夏季热岛特征研究   总被引:8,自引:1,他引:8  
根据2002牟夏季高温期间合肥市城市小气候考察的资料,分析了合肥市夏季城市热岛特征以及热岛强度的历史变化。结果表明:1)合肥市夏季热岛强度的日变化与冬季明显不同,夏季晴天一天中热岛强度只出现一个峰值,其基本特征与Oke提出的理想状态下的城市热岛强度日变化的模式曲线非常相似,而冬季与高纬地区的加拿大卡尔加里城市的热岛强度日变化特征接近。这反映了冬、夏两季人类活动、能源消耗量的不同;2)随着城市范围的扩大和城市绿化工程的实施,合肥市热岛面积、分布形状有了一定的改变,但主要分布特征和强度基本没有变化。  相似文献   

17.
长三角城市群非均匀性对区域热岛效应影响的数值模拟   总被引:2,自引:2,他引:0  
使用中尺度数值模式WRF3.9/Noah/UCM,对长三角地区无明显天气过程的2013年8月11至17日一周进行数值模拟,采用2013年500 m分辨率的MODIS数据更新土地覆盖资料,依据城镇比例将城市下垫面进一步分类为高中低3种类型,以此研究长三角城市群非均匀性对区域热岛效应的影响。结果表明:长三角城市群近地面气象要素场对城市下垫面的非均匀性比较敏感,平均热岛强度、干岛强度和风速衰减相较于不考虑城市非均匀性分别减小了16.41%、20.04%和6.25%;受背景风场影响,白天城市群的热岛强度弱于夜晚,均有向下游扩展现象,且内陆城市的热岛强度和干岛强度较沿岸区域更强;相比于均匀城市下垫面试验,考虑非均匀城市影响后,整体热岛强度和干岛强度减弱;白天垂直热岛环流结构明显,整体可以伸展至2 km高度,在东南风背景下,热岛上游高密度城市的热岛环流会抑制下游热岛环流发展,考虑城市非均匀性后,上游效应更显著;热岛强度受非均匀性影响在傍晚和夜间最高减弱可达0.2℃,且进入较强热岛的时间会推迟,维持时间也将缩短。因此,忽略城市下垫面的非均匀性,可能会高估区域热岛效应。  相似文献   

18.
本文采用RBLM-chem模式,利用杭州市高分辨率城市建筑等资料,定量分析城市动力效应、热力效应以及城市植被、人为热对SO2、NO2、O3、PM2.5等主要污染物浓度的影响。结果表明,城市化过程使得大部分城区温度上升约1℃,相对湿度下降约6%,风速下降约0.8 m·s-1,湍流动能增强约0.03 m2·s-2。城市动力效应主要通过降低城市风速,使得城区污染物浓度升高,SO2浓度有近5 μg·m-3的上升,PM2.5、O3浓度也有近15 μg·m-3的上升。城市热力效应主要通过热岛环流使城区污染物向上输送,令地面污染物浓度降低,在城市大部分区域PM2.5都有大约10 μg·m-3的浓度下降。城市动力效应大于热力效应,城市的总体作用是使污染物浓度升高。城市下垫面使污染物浓度上升的另外一个机制是代替了自然有植被的下垫面,使污染物干沉降速度下降,但这一作用小于动力学效应。另一方面,人为热对城市主要污染物浓度都起着减小的作用,其中SO2、NO2、O3、PM2.5浓度降幅分别在2.5、3.0、6.0、10.0 μg·m-3左右。城市植被可以显著增加污染物干沉降速度,使主要污染物SO2、NO2、O3和PM2.5的干沉降速度分别上升0.1、0.1、0.03、0.06 m·s-1左右,相应地使上述污染物浓度分别下降2.5、6.0、4.0、6.0 μg·m-3左右。  相似文献   

19.
应用基于多层城市冠层方案BEP(Building Environment Parameterization)增加室内空调系统影响的建筑物能量模式BEM(Building Energy Model)方案的WRF模式,模拟研究重庆热岛的特征、成因以及局地环流对热岛形成的影响。文中共有两个算例,一为重庆真实下垫面算例,称之为URBAN算例,二为将城市下垫面替换为耕地下垫面的对比算例,称之为NOURBAN算例。结果表明:1)WRF方案模拟结果与观测2 m气温的对比吻合较好,误差主要出现在正午温度峰值和凌晨温度谷值处,由城市下垫面特性及城市内建筑分布误差引起。2)BEP+BEM方案较好地模拟出了重庆地区的热岛分布的空间和时间特征。重庆市温度的分布受地形和城市下垫面的双重影响,越靠近城区,温度的分布受城市化影响就越大,在海拔低处,温度就越高。3)城区立体三维表面对辐射的陷阱作用导致城市表面总体反射率小,向上短波辐射小于郊区约20 W/m~2。城市表面以感热排放为主,而郊区则表现为潜热的作用占主导。夜间城市地表储热以及空调废热向大气释放,是城市热岛形成的重要原因。4)模拟区域背景风场主要为东南风,局地环流呈现出越靠近山区风速越大、城市区域风速较小的特性,体现了城市密集的建筑群对低层大气流场的空气动力学效应,以及复杂山谷地形的山谷风环流特性。在市区的西侧和东南侧均有高大山脉阻挡,山脉对城市出流的阻碍作用、气流越山与绕流运动对城市热岛的形成有一定影响。  相似文献   

20.
何晓凤  蒋维楣  刘红年 《大气科学》2008,32(6):1445-1457
用南京大学区域边界层模式NJU-RBLM, 通过对一组理想试验的模拟, 研究了TEB方案 (town energy balance) 和SVAT方案 (soil-vegetation-atmosphere transfer) 模拟城市热岛现象的差异及本质原因, 发现TEB方案对城市热岛 (UHI) 尤其是夜间UHI模拟效果更优, 这是由于TEB方案具备较强模拟城市储热项的能力形成的。此外, 深入探讨UHI对大气边界层热力结构的影响, 发现UHI现象使城市和郊区的近地层位温廓线在清晨和傍晚都存在明显差异, 同时使城市区域气温全天高于郊区, 且日间城乡温差能达到的高度明显高于夜间。分析人为热源和建筑物冠层对UHI的影响时发现: 人为热源对UHI的影响在夜间强于白天, 而建筑物对白天城市湍能的影响强于人为热源的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号