首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
By the analysis of the published zircon U-Pb ages and Hf isotope data, this paper firstly presents a comprehensive review about the staggered growth and reworking of early Precambrian continental crust in Alxa Block. The results show that the ancient crustal remnants of Alxa Block was formed in Meso-Paleo Archean, which was recorded by 3.0~3.6 Ga detrital zircons and Hf model ages. The early crustal growth of Alxa Block could be traced back to early Paleo-archean. Currently, the oldest zircon U-Pb age is about 3.6 Ga. Analogous to the other places of North China Craton, the Alxa Block underwent two-stage crustal growth at 2.7~2.9 Ga and 2.5~2.6 Ga respectively, and the former might be wider. The ~2.5 Ga (TTG) tectono-magmatic event, which represents the North China continent’s cratonization, also existed in Alxa Block. The corresponding zircon Hf isotope data indicate that the TTGs were mainly derived by melting of 2.7~2.9 Ga juvenile crust, possibly by mixing with a certain ancient crust, and a small portion was produced by instant reworking of 2.5~2.6 Ga juvenile crust. Proceeding to Paleo-proterozoic, the Alxa Block underwent multi-stage tectono-magmatic events, approximately peaked at 2.30~2.35 Ga, 2.15~2.17 Ga, 2.00~2.10 Ga, 1.95~1.98 Ga and ~1.90 Ga. The continental crust was mainly formed by reworking of 2.7~2.9 Ga and 2.5~2.6 Ga juvenile crust, simultaneously by a fraction of ~2.1 Ga juvenile crust. In Paleo-proterozoic, not only the Archean crustal reworking but also the juvenile crustal growth existed in Alxa Block.  相似文献   

2.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

3.
We conducted in situ U–Pb and Lu–Hf isotope analyses of 401 detrital zircons collected from the Songpan–Ganzi Triassic turbidite complex in an attempt to understand the provenance variations of the siliciclastic rocks and the crustal growth history of central China. These detrital zircons exhibit a wide age spectrum with three major peaks at 1.7–2.0 Ga, 750–1050 Ma, and 210–500 Ma. They are dominated by negative ?Hf(t) values with a large range. Synthesis of the zircon U–Pb and Lu–Hf isotopic data indicate that the Triassic Songpan–Ganzi turbiditic succession could have been derived dominantly from the Tibetan terrains + the Kunlun and Qinling orogens. Our samples are characterized by a common, prominent group of Hf crust formation model ages at 0.8–4.1 Ga with a peak at 2.7–3.4 Ga. This fact indicates that (1) Phanerozoic magmatism in central China could have been predominantly products of crustal reworking with insignificant formation of juvenile crust and (2) the Neoarchaean was an important period of continental growth in central China. In addition, our data set also reveal that three widespread tectonothermal events could have occurred in the region during the late Mesoproterzoic, Palaeozoic, and early Mesozoic, respectively.  相似文献   

4.
Geological history from the late Palaeoproterozoic to early Neoproterozoic is dominated by the formation of the supercontinent Columbia, and its break-up and re-amalgamation into the next supercontinent, Rodinia. On a global scale, major orogenic events have been tied to the formation of either of these supercontinents, and records of extension are commonly linked to break-up events. Presented here is a synopsis of the geological evolution of southwest Fennoscandia during the ca. 1.9–0.9 Ga period. This region records a protracted history of continental growth and reworking in a long-lived accretionary orogen. Three major periods of continental growth are defined by the Transscandinavian Igneous Belt (1.86–1.66 Ga), Gothian (1.66–1.52 Ga), and Telemarkian (1.52–1.48 Ga) domains. The 1.47–1.38 Ga Hallandian–Danopolonian period featured reorganization of the subduction zone and over-riding plates, with limited evidence for continental collision. During the subsequent 1.38–1.15 Ga interval, the region is interpreted as being located inboard of a convergent margin that is not preserved today and hosted magmatism and sedimentation related to inboard extensional events. The 1.15–0.9 Ga period is host to Sveconorwegian orogenesis that marks the end of this long-lived accretionary orogen and features significant crustal deformation, metamorphism, and magmatism. Collision of an indenter, typically Amazonia, is commonly inferred for the cause of widespread Sveconorwegian orogenesis, but this remains inconclusive. An alternative is that orogenesis merely represents subduction, terrane accretion, crustal thickening, and burial and exhumation of continental crust, along an accretionary margin. During the Mesoproterozoic, southwest Fennoscandia was part of a much larger accretionary orogen that grew on the edge of the Columbia supercontinent and included Laurentia and Amazonia amongst other cratons. The chain of convergent margins along the western Pacific is the best analogue for this setting of Proterozoic crustal growth and tectonism.  相似文献   

5.
Clastic sedimentary rocks are samples of the exposed continental crust. In order to characterize the crustal growth history of North China and its possible regional variations, 479 concordant detrital zircons in three sand samples from the lower reach of the Yellow River (which drains the Tibet-Qinghai Plateau, the Western Qinling Orogen, the Qilian Orogen and the North China Craton) and two sand samples from the Luan River and the Yongding River (which run entirely within the North China Craton) were measured for U-Pb age and Lu-Hf isotopic compositions by excimer laser-ablation ICP-MS and MC-ICP-MS. Although regional variations exist, concordant detrital zircons from the Yellow River reveal three major age groups of 2.1-2.5 Ga, 1.6-2.0 Ga, and 150-500 Ma. Detrital zircons from the smaller Luan and Yongding Rivers show three broadly similar major age groups at 2.3-2.6 Ga, 1.6-2.0 Ga, and 140-350 Ma, but with narrower age ranges. Compared to the Luan and Yongding River zircons, the Yellow River zircons are characterized by a significant number of Neoproterozoic grains. Although Hf isotopic compositions show both juvenile crustal growth and crustal reworking for all age groups, much of the crustal growth of North China occurred in the Neoarchean and Mesoproterozoic. All three rivers are characterized by a common prominent group of Hf crust formation model ages at 2.4-2.9 Ga with a peak at 2.7-2.8 Ga. A less significant age group lies between 1.4 and 1.8 Ga for the Yellow River, and between 1.6 and 1.9 Ga for the Yongding River and Luan River. Crustal growth rates based on Hf continental crust formation model ages suggest 45% and 90% of the present crustal volume was formed by 2.5 Ga and 1.0 Ga, respectively, for the drainage area of the Yellow River. In comparison, 60% and 98% of the present crustal volume of the North China Craton was generated by 2.5 Ga and 1.0 Ga, respectively, for the Luan and Yongding Rivers. The 2.7-2.8 Ga age peak observed in all river samples agrees well with the coeval major peak for global crustal growth. However, the other suggested global peaks of crustal growth at 3.4 and 3.8 Ga are insignificant in North China. Taken together with our previous studies of the Yangtze Craton, which show insignificant crustal growth at 2.7-2.8 Ga, we suggest that these advocated worldwide crust formation peaks be re-examined and treated carefully. Our results also show that Phanerozoic zircons may have been derived from crustal sources separated from the mantle up to 2.0 Ga ago before the zircons crystallized, suggesting long-term preservation, reworking and recycling of the continental crust.  相似文献   

6.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

7.
Models of the volume of continental crust through Earth history vary significantly due to a range of assumptions and data sets; estimates for 3 Ga range from <10% to >120% of present day volume. We argue that continental area and thickness varied independently and increased at different rates and over different periods, in response to different tectonic processes, through Earth history. Crustal area increased steadily on a pre-plate tectonic Earth, prior to ca. 3 Ga. By 3 Ga the area of continental crust appears to have reached a dynamic equilibrium of around 40% of the Earth's surface, and this was maintained in the plate tectonic world throughout the last 3 billion years. New continental crust was relatively thin and mafic from ca. 4–3 Ga but started to increase substantially with the inferred onset of plate tectonics at ca. 3 Ga, which also led to the sustained development of Earth's bimodal hypsometry. Integration of thickness and area data suggests continental volume increased from 4.5 Ga to 1.8 Ga, and that it remained relatively constant through Earth's middle age (1.8–0.8 Ga). Since the Neoproterozoic, the estimated crustal thickness, and by implication the volume of the continental crust, appears to have decreased by as much as 15%. This decrease indicates that crust was destroyed more rapidly than it was generated. This is perhaps associated with the commencement of cold subduction, represented by low dT/dP metamorphic assemblages, resulting in higher rates of destruction of the continental crust through increased sediment subduction and subduction erosion.  相似文献   

8.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

9.
A worldwide database of over 13,800 integrated U–Pb and Hf-isotope analyses of zircon, derived largely from detrital sources, has been used to examine processes of crustal evolution on a global scale, and to test existing models for the growth of continental crust through time. In this study we introduce a new approach to quantitatively estimating the proportion of juvenile material added to the crust at any given time during its evolution. This estimate is then used to model the crustal growth rate over the 4.56 Ga of Earth's history. The modelling suggests that there was little episodicity in the production of new crust, as opposed to peaks in magmatic ages. The distribution of age-Hf isotope data from zircons worldwide implies that at least 60% of the existing continental crust separated from the mantle before 2.5 Ga. However, taking into consideration new evidence coming from geophysical data, the formation of most continental crust early in Earth's history (at least 70% before 2.5 Ga) is even more probable. Thus, crustal reworking has dominated over net juvenile additions to the continental crust, at least since the end of the Archean. Moreover, the juvenile proportion of newly formed crust decreases stepwise through time: it is about 70% in the 4.0–2.2 Ga time interval, about 50% in the 1.8–0.6 Ga time interval, and possibly less than 50% after 0.6 Ga. These changes may be related to the formation of supercontinents.  相似文献   

10.
张宏飞  赵志丹 《岩石学报》1995,11(2):160-170
北秦岭各岩类116个样品Sm-Nd同位素模式年龄(tDM)变化于0.9~2.4Ga之间,反映北秦岭地壳主要形成于元古代,0.9Ga之后没有明显大规模新生地壳的形成。在Nd模式年龄分布图上出现2.05Ga、1.40Ga和1.05Ga三个明显的峰值,它们相应地代表北秦岭地壳的三个增生期。与华北克拉通南缘地壳存在2.65Ga、2.10Ga和1.40Ga三个增生期相对比,表明从华北克拉通南缘到北秦岭,地壳侧向增生是逐渐发展的,这是一个统一典型陆块的地壳增长过程,而北秦岭原来应属于华北的一部分。另外,从北秦岭花岗岩揭示的北秦岭地壳深部性质看,北秦岭地壳深部在1.0Ga~1.2Ga左右的板底垫托作用是相当明显的,而在晚古生代后可能又受到区域折离层作用的影响。  相似文献   

11.
Zircon crystals precipitated from granitoid magmas contain a robust record of the age and chemistry of continental magmatism spanning some 4.375 Ga of Earth history, a record that charts initiation of plate tectonics. However, constraining when exactly plate tectonics began to dominate crustal growth processes is challenging as the geochemical signatures of individual rocks may reflect local subduction processes rather than global plate tectonics. Here we apply counting statistics to a global database of coupled U–Pb and Hf isotope analyses on magmatic zircon grains from continental igneous and sedimentary rocks to quantify changes in the compositions of their source rocks. The analysis reveals a globally significant change in the sources of granitoid magmas between 3.2 and 2.7 Ga. These secular changes in zircon chemistry are driven by a coupling of the deep (depleted mantle) and shallow (crustal) Earth reservoirs, consistent with a geodynamic regime dominated by Wilson cycle style plate tectonics.  相似文献   

12.
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.  相似文献   

13.
The Protopangaea-Palaeopangaea model for the Precambrian continental crust predicts quasi-integrity reflecting a dominant Lid Tectonics defined by a palaeomagnetic record showing prolonged near-static polar behaviour during very long time intervals (~2.7–2.2, 1.5–1.2, and 0.75–0.6 Ga). Intervening times show polar loops radiating from the geometric centre of the crust explaining the anomalous Precambrian magnetic inclination bias. The crustal lid was a symmetrical crescent-shaped body confined to a single hemisphere on the globe comparable in form to the Phanerozoic supercontinent (Neo)Pangaea. There were two major transitions in the tectonic regime when prolonged near-static motion was succeeded by widespread tectonic-magmatic activity, and each coincided with the major isotopic/geochemical signatures in the Precambrian record. The first comprised a ~90° reconfiguration of crust and mantle at ~2.2 Ga terminating the long 2.7–2.2 Ga static interval; the second was the largest continental break-up event in geological history and is constrained to the Ediacaran Period at ~0.6 Ga by multiple isotopic and geochemical signatures and the subsidence history of marine passive margins. Break-up of the lid at ~0.6 Ga defines a transition from dominant Lid Tectonics to dominant Plate Tectonics and is the primary cause of contrasts between the Precambrian and Phanerozoic aeons of geological times. The long interval of minimal continental motion in the mid-Proterozoic correlates with extensive emplacement of anorogenic anorthosite-rapakivi plutons unique to these times, and high-level emplacement was probably caused by blanketing of the mantle and comprehensive thermal weakening of the crust. Continental velocities were low during the two Proterozoic intervals characterized by profound glaciation (~2.4–2.2 and ~0.75–0.6 Ga) when partial or complete magmatic shutdown is likely to have reduced volcanic greenhouse gas production. Specific implications of Protopangaea-Palaeopangaea include: (i) support for recent evidence that 60–70% of the present continental crust had accreted by ~2.5 Ga; (ii) recognition from spatially constrained mineral provinces that sub-crustal lithosphere was already chemically differentiated by mid-Archaean times; (iii) strong axial alignment of younger greenstone belts, major Palaeoproterozoic shear zones, and later Meso–Neoproterozoic mobile/orogenic belts; (iv) concentration of anorogenic magmatism and progressive contraction of activity towards the orogenic margin subsequently to become the focus of Grenville (~1.1 Ga) orogenesis; and (v) late Neoproterozoic arc magmatism/tectonics at the instep margin of the continental crescent persisting until the Ediacaran continental break-up.  相似文献   

14.
The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52 to 1.48 Ga continental building and variable reworking during the ~1.1 to 0.9 Ga Sveconorwegian orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents zircon U–Pb–Hf–O isotope data combined with whole-rock geochemistry to address the age and petrogenesis of basement units within the Suldal region, located in the centre of the Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. U–Pb ages confirm that magmatism occurred from ~1,521 to 1,485 Ma, and conspicuously lack any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like (δ18O ~5 ‰) to elevated (~10 ‰) suggesting involvement of low-temperature altered material (e.g., supracrustal rocks) in the magma source. The Hf–O isotope array is compatible with mixing between mantle-derived material with young low-temperature altered material (oceanic crust/sediments) and older low-temperature altered material (continent-derived sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation zone. A proposed model comprises accretion of altered oceanic crust and the overlying sediments to a pre-existing continental margin, underthrusting to the magma-generation zone and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is comparable with that seen in the Phanerozoic (e.g., the Sierra Nevada and Coast Range batholiths), with compositions in the Suldal Sector reaching those of average upper continental crust. As within these younger examples, factors that drive magmatism towards the composition of the average continental crust include the addition of sedimentary material to magma source regions, and delamination of cumulate material. Underthrusting of sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism involved in continental growth than is currently recognised. Finally, the Suldal Arc magmatism represents a significant juvenile crustal addition to SW Fennoscandia.  相似文献   

15.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

16.
华北克拉通对前寒武纪超大陆旋回的基本制约   总被引:33,自引:4,他引:33  
全球大陆克拉通在前寒武纪至少记录了3次超大陆聚合-裂解的构造旋回。不同大陆前寒武纪地质的研究证明,板块的构造模式可以前推至新太古代。超大陆的聚合表现为大规模造山带的穿时性发育,而裂解则表现为大陆裂谷系、非造山花岗岩及巨型基性岩浆岩省的同期快速发育。广泛的区域地质研究揭示华北克拉通前寒武纪地质构造演化具有明显的阶段性差异特征,克拉通主体形成于新太古代陆壳增生与碰撞造山过程。华北克拉通在太古宙末期首次经历强烈的裂解作用,在古元古代晚期涉及强烈的陆缘再造作用。在古元古代末期发生第二次大规模的裂解活动,随后以中元古代末期的造山带拼合为Rodinia超大陆的组成部分。详细的区域构造对比证明,华北克拉通长期以来与波罗的地质、东南极克拉通、印度南部克拉通、巴西克拉通等具有构造亲缘关系。  相似文献   

17.
华北克拉通具有3.8Ga以上的演化历史,TTG是其地质记录的最重要载体。华北克拉通太古宙(特别是中太古代以前)地质演化在很大程度上与TTG岩石密切相关。在华北克拉通,始太古代(3.6~4.0Ga)TTG岩石仅在鞍本地区被发现,但冀东地区已在多种变质碎屑沉积岩中发现大量3.6~3.88Ga碎屑锆石;古太古代(3.2~3.6Ga)TTG岩石在鞍本、冀东、信阳地区被识别出来;中太古代(2.8~3.2Ga)TTG岩石在鞍本、冀东、胶东、鲁山等地存在;可把新太古代(2.5~2.8Ga)进一步划分为早期和晚期两个阶段:新太古代早期(2.6~2.8Ga)TTG岩石已在10余个地区被发现,新太古代晚期(2.5~2.6Ga)TTG岩石几乎在每一个太古宙基底岩石出露区都存在。野外地质、锆石定年、元素地球化学和Nd-Hf同位素组成研究表明,中太古代以前TTG岩石局部存在,主要分布于Wan et al.(2015)所划分的三个古陆块中;新太古代TTG岩石广泛分布,是陆壳增生最重要时期岩浆作用的产物。TTG岩石类型随时代变化,3.1~3.8Ga和2.7~2.9Ga TTG岩石分别主要为奥长花岗岩和英云闪长岩;2.5~2.6Ga期间花岗闪长岩大规模出现,并有壳源花岗岩广泛分布,表明这时陆壳已有相当的成熟度。奥长花岗岩轻重稀土分异程度从弱到强的时间出现在~3.3Ga;2.5~3.3Ga的TTG岩石轻重稀土分异程度变化很大,表明其形成条件存在很大差异。TTG岩石主要为新生地壳,但也有相当部分为壳内再循环产物或形成过程中受到陆壳物质影响。华北克拉通中太古代以前的主要构造机制是板底垫托或地幔翻转作用,新太古代晚期板块构造体制可能已起作用。  相似文献   

18.
The southeastern Guyana Shield,northeast Amazonian Craton,in the north of Brazil,is part of a widespread orogenic belt developed during the Transamazonian orogenic cycle(2.26-1.95 Ga)that includes a large Archean continental landmass strongly reworked during the Transamazonian orogeny,named Amapa Block.It consists mainly of a high-grade metamorphic granulitic-migmatitic-gneiss complex,of Meso-to Neoarchean age and Rhyacian granitoids and supracrustal sequences.For the first time,coupled U-Pb and Lu-Hf isotope data were obtained on zircon by LA-ICP-MS from five tectono-stratigraphic units of the Archean basement and one Paleoproterozoic intrusive rock,in order to investigate the main episodes of crustal growth and reworking.Whole-rock Sm-Nd isotope data were compared to the zircon Lu-Hf data.Three main magmatic episodes were defined by U-Pb zircon dating,two in the Mesoarchean(~3.19 Ga and 2.85 Ga)and one in the Neoarchean(~2.69-2.65 Ga).SubchondriticεHf(t)values obtained for almost all investigated units indicate that crustal reworking processes were predominant during the formation of rocks that today make up the Amapa Block.Hf-TDMC model ages,ranging from2.99 Ga to 3.97 Ga,indicate that at least two important periods of mantle extraction and continental crust formation occurred during the Archean in southeastern Guyana Shield,an older one in the Eoarchean(~4.0 Ga)and a younger one in the Mesoarchean(~3.0-3.1 Ga).The latter is recognized as an important period of crustal accretion worldwide.The recognition of an Eoarchean episode to the southeastern most part of the Guyana Shield is unprecedented and was not recorded by whole-rock Sm-Nd data,which were restricted to the Meso-Paleoarchean(2.83 Ga to 3.51 Ga).This finding reveals t hat continental crust generation in the Amazonian Craton began at least 500 Ma earlier than previously suggested by the SmNd systematics.  相似文献   

19.
扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究   总被引:5,自引:2,他引:5  
张少兵  郑永飞 《岩石学报》2007,23(2):393-402
对宜昌三峡附近崆岭杂岩中混合岩、片麻岩和变沉积岩以及莲沱砂岩进行了锆石U-Pb和Hf-O同位素研究,研究结果深化了我们对扬子陆核生长和再造的认识。在莲沱砂岩中发现了老达3.8Ga的碎屑锆石,说明扬子陆块可能存在这个年龄的地壳物质;其Hf同位素组成指示初生地壳生长出现在4.0Ga。崆岭杂岩中混合岩和片麻岩的U-Pb年龄表明,在3.2~3.3Ga和2.9~3.0Ga有两期重要的岩浆活动,指示扬子陆核可能于中太古代就开始形成。锆石Hf同位素研究则指示,其原岩至少从3.5Ga就开始从亏损地幔分异出来。混合岩和变沉积岩中所记录的1.9~2.0Ga变质事件,是扬子陆核再造并发生克拉通化的主要时期。而广泛分布于扬子陆块周边的新元古代岩浆活动不仅导致了许多太古宙和古元古宙地壳重熔,而且引起了初生地壳的快速再造。  相似文献   

20.
兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长   总被引:29,自引:3,他引:26  
大陆地壳的生长速率和地壳生长的位置均是地球科学中的最基本的问题。现有的许多大陆地壳生长模式认为 ,90 %的大陆地壳生长于 18亿年以前 ,显生宙以来的地壳生长不到整个地壳的 10 % ,主要位于活动大陆边缘。近年来在兴蒙造山带发现大量具有新生地壳来源性质的花岗岩产生于 50 0~ 10 0Ma ,对上述传统看法提出了挑战。现有的Nd同位素资料表明 ,兴蒙造山带的显生宙花岗岩 ,不论形成于什么时代和什么构造背景 ,也不论属于何种成因类型 ,几乎都具有正ε(Nd ,t)值和年轻的Nd模式年龄tDM 。从西往东 ,随着时代逐渐变新ε(Nd ,t)值有逐渐降低的趋势。花岗岩的tDM同由蛇绿岩和岛弧杂岩记录的古亚洲洋扩张的时间基本一致。只有一些在新元古代微陆块上的花岗岩才显示负ε(Nd ,t)值和较老的tDM,反映了其源岩包括前寒武纪地壳同地幔来源物质的不同程度混合。兴蒙造山带的花岗岩具有地幔来源的ε(Nd ,t)值 ,说明这些花岗岩中有一部分 (例如加里东期和海西早期 )可能同板块俯冲作用有关 ,花岗岩的来源是被交代的地幔楔。而大面积的晚古生代—中生代花岗岩则可能是由 80 0~6 0 0Ma前俯冲的洋壳形成的新生大陆地壳在拉伸体制下部分熔融而成。如果情况是这样 ,显生宙就曾发生过大规模的地壳生长。板内岩浆活动 ,特别是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号