首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent decades, great efforts have been made to efficiently explore tidal stream energy due to its unique advantages of easy prediction and great potential. China recently launched a national tidal stream farm demonstration project in the waterway between Putuoshan and Hulu Islands in the Zhoushan area. Before deployment of the turbine array, it is necessary to understand the hydrodynamic changes associated with the construction of a turbine array. In this study, we developed a depth-averaged hydrodynamics model that solves the shallow water governing equations to simulate the tidal hydrodynamics around the Zhoushan Archipelago. The simulation results agree with field data in terms of the water elevation and stream velocity. We considered two types of turbine arrays in this study and investigated their impacts on the local hydrodynamics. In general, the stream velocity in the northern and southern areas is reduced due to the power take-off of the turbine array, whereas stream velocity in the western and eastern areas is slightly increased due to the blockage impact of the turbine array.  相似文献   

2.
An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model) with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago, China, with focus on the region named PuHu Channel between Putuo Island and Hulu Island. The model was calibrated with several measurements in the channel, and the model performance was validated. An examination of the spatial and temporal distributions of tidal energy resources based on the numerical simulation revealed that the greatest power density of tidal energy during spring tide is 3.6 kW m-2 at the northern area of the channel. Two parameters were introduced to characterize the generation duration of the tidal array that causes the temporal variation of tidal current energy. The annual average available energy in the channel was found to be approximately 2.6 MW. The annual generating hours at rated power was found to be 1800 h when the installed capacity of tidal array is approximately 12 MW. A site for the tidal array with 25 turbines was selected, and the layout of the array was configured based on the EMEC specifications. Hydrodynamic influence due to the deployment of the tidal array was simulated by the modified FVCOM model. The simulation showed that the tidal level did not significantly change because of the operation of the tidal array. The velocity reduction covered a 2 km~2 area of the downstream the tidal array, with a maximum velocity reduction of 8 cm s-1 at mid-flood tide, whereas the streamwise velocity on both sides of the farm increased slightly.  相似文献   

3.
La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.  相似文献   

4.
The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.  相似文献   

5.
In this study, power spectral density and inverse analyses were performed to obtain the frequency characteristics and spatial distribution of temperature in the Qiongzhou Strait using reciprocal sound transmission data obtained in a coastal acoustic tomography experiment conducted in 2013. The results reveal three dominant types of internal tides(diurnal, semidiurnal, and terdiurnal).Spectral analysis of the range-average temperature deviation along the northern and southern transmission paths shows that along the northern path, the energy of the diurnal internal tides was significantly larger than that of the semidiurnal tides. The semidiurnal internal tides, in contrast, were more pronounced along the southern path. A terdiurnal spectrum with an energy level equivalent to that of the semidiurnal internal tide was discernable for both the northern and southern paths. These three types of internal tides can also be recognized in the time variation of the zonal-average temperature deviation. The diurnal internal tides were strengthened along the northern coast, implying their westward propagation and the existence of coastally trapped effects. The other two types of internal tides, which have smaller wavelengths than the diurnal internal tides, were less resolved over the entire tomographic domain due to the insufficient resolution of the inversion. The data quality was verified to be satisfactory by error estimation.  相似文献   

6.
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×10~5 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio(TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.  相似文献   

7.
Based on the finite-volume coastal ocean model(FVCOM),a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen(BCM).The domain decomposition method,which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy,was employed to estimate the theoretical tidal energy resources and developable energy resources,and to analyze the hydrodynamic effect of the tidal power station.This innovative approach has the advantage of linking physical oceanography with engineering problems.The results indicate that the theoretical annual tidal energy resources is about 2×10~8 k Wh under the influence of tidal power station;Optimized power installation is confirmed according to power generation curve from numerical analysis;the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation.The electricity generation time and power are 3479 hours and 2.55×10~4 KW,respectively.The power station has no effect on the tide pattern which is semi-diurnal tide in both two conditions,but the amplitudes of main constituents apparently decrease in the area near the dam,with the M_2 decreasing the most,about 62.92 cm.The tidal prism shrinks to 2.28×10~7 m~3,but can still meet the flow requirement for tidal power generation.The existence of station increases the flow rate along the waterway and enhances the residual current.There are two opposite vortexes formed on the east side beside the dam of the station,which leads to pollutants gathering.  相似文献   

8.
This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinic tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey(G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous. The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.  相似文献   

9.
Tidal rivers are intrinsically complex because tidal propagation is influenced by river discharge. This study aims to examine the seasonal variation of tidal prism and energy variance in the tidal river of the Changjiang(Yangtze) River estuary in China. In order to quantify the behaviour of river and tide,we use numerical modelling that has been validated using measured data. We conduct our analysis by quantifying the discharge and energy variance in separate components for both the river and the tide,during wet and dry seasons. We note various definitions of tidal prism and explore the difference between tidal discharge on the flood and ebb and tidal storage volume. The results show that the river discharge attenuates the tidal motion and reduces the tidal flood discharge but the tidal storage volume is approximately constant with different riverine discharge since part of the fresh water discharge is intercepted and captured in the estuary due to the backwater effect. It appears that the tidal discharge adjusts according to the variation of river discharge to keep a constant tidal storage volume. An analysis of the hydraulics shows that the transition from tidal dominance(at the mouth) to river dominance(upstream) depends on the location of tidal current reversal which varies from wet season to dry season. Duringthe wet season,the Changjiang River estuary is totally dominated by energy from fresh water discharge.  相似文献   

10.
Teng  Fei  Fang  Guohong  Xu  Xiaoqing 《中国海洋湖沼学报》2017,35(5):987-1001
A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.  相似文献   

11.
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean.  相似文献   

12.
A time-dependent, three-dimensional finite difference model is presented for simulating the stratifiedYellow Sea and northem East China Sea. The mode is forced by time-dependent observed wind, surfaceflux of heat, and tidal turbulence. With this model, momentum and temperature distribution can be computed,and an approximation for the sub-grid scale effects is introduced by the use of mass and momentumexchange coefficients. The vertical exchanges are quite dependent on these assumed coefficents, whichare complicated functions of the turbulence energy of tide and wind, of the stratified strength and otherfactors. This model was applied to describe the mechanics of the variations in strength and thickness ofthe thermocline covering almost the whole Yellow Sea and northern East Chna Sea in summer. Comparisonsof the computed output with obtained survey data led to some important conclusions.  相似文献   

13.
The Wenzhou Shoal Reclamation Project is the core part of Wenzhou Peninsula Engineering which is a big comprehensive development project to expand the city space. The dynamics of the surrounding area was proved to suffer little effect in response to the Lingni north dyke since it was built approximately along the current direction. Therefore, this paper focuses firstly on the tidal characteristics in the Wenzhou and Yueqing bays with the Lingni north dyke being built and then on the changes resulting from the implementation of the on-going Wenzhou Shoal Reclamation Project(WSRP) which will reclaim land from the whole Wenzhou Shoal. To simulate the tidal dynamics, a high-resolution coastal ocean model with unstructured triangular grids was set up for the Wenzhou and Yueqing Bays. The model resolved the complicated tidal dynamics with the simulated tidal elevation and current in good agreement with observations. In the study area, M2 is the predominant tidal component, which means the tide is semidiurnal. The new reclamation project hardly affects the Yueqing Bay and the open ocean, but there are concentrated effects on the mouth of the southern branch of the Oujiang River and the southwest of Wenzhou Shoal. This study provides an indicative reference to the local government and helps to weigh the advantages and disadvantages of the project.  相似文献   

14.
l Some problems on the astronomical theory of ice ageThe astronomical theory of ice age, as the up todate solution for the global climatic changes in theQuaternary period, has been accepted by the most ofthe scientists in the world. However, there are stillsome arguable problems to need further research.Zhou Shangzhe (t994) pllt forward three questionslike as follows:The astronomical theory of ice age suggestedthat the ice age occurred when the eccentricity of theorbit of the earth was at its…  相似文献   

15.
Glaciation between northern hemisphere and southern hemisphere were synchronous, the ice age occurred not in high but in low value of the eccentricity of the earth's orbit. Such facts went against the precession principle of the astronomical theory of ice age. The inhomogeneous distribution of climate consisted with the inhomogeneous distribution of ocean and continent. The north/south antisymmetry may be attributed to southward deviation of the thermal center and northward deviation of the mass center within the mantle demonstrated by seismic tomography. The core - mantle angular momentum makes rotational energy into thermal energy and mantle plumes erupt in the ocean bottom. The earth's deformation by tidal force makes the eruption of mantle plumes strong. They are the reason that glaciation between the Northern Hemisphere and Southern Hemisphere are synchronous and the ice age occurred in low value of the eccentricity of the earth' s orbit. The tectonic movement is playing a most important part in global climate change.  相似文献   

16.
采用香港11个GPS测站的观测资料进行1 h、2 h、3 h和4h静态PPP解算,获得4组PPP坐标序列,利用调和分析求取11个测站处8个主要分潮的负荷位移参数(振幅和相位),将其与海潮模型计算的负荷位移参数进行对比,并比较分析PPP反演值与海潮模型值改正海潮负荷信号的效果。结果表明,垂直和水平方向上,不同PPP结果反演8个分潮的负荷位移分别具有约5 mm和7 mm的差异;PPP反演8个分潮垂向负荷位移优于全球海潮模型,但水平方向上的反演效果稍弱。  相似文献   

17.
The South China Sea (SCS) is one of the most active areas of internal waves. We undertook a program of physical oceanography in the northern South China Sea from June to July of 2009, and conducted a 1-day observation from 15:40 of June 24 to 16:40 of June 25 using a chain of instruments, including temperature sensors, pressure sensors and temperature-pressure meters at a site (117.5°E, 21°N) northeast of the Dongsha Islands. We measured fluctuating tidal and subtidal properties with the thermistor-chain and a ship-mounted Acoustic Doppler Current Profiler, and observed a large-amplitude nonlinear internal wave passing the site followed by a number of small ones. To further investigate this phenomenon, we collected the tidal constituents from the TPXO7.1 dataset to evaluate the tidal characteristics at and around the recording site, from which we knew that the amplitude of the nonlinear internal wave was about 120 m and the period about 20 min. The horizontal and vertical velocities induced by the soliton were approximately 2 m/s and 0.5 m/s, respectively. This soliton occurred 2–3 days after a spring tide.  相似文献   

18.
In order to better understand the general tidal features in the venturi-shaped area between Zhenhai and Shenjiamen in the northern coastal region of Zhejiang Province in the East China Sea, the tidal data were obtained from both the three permanent tide stations of Zhenhai, Dinghai and Shenjiamen, and four temporary tide stations of Mamu, Chuanshan, Guoju and Liuheng, along with the current speed being observed at Luotou Waterway. Results from harmonic analysis show that: (1) The area was dominated by shallow water tides with irregular semi-diurnal features, and the smallest tidal range occurred in the area near a crossing line between Zhenhai and Dinghai stations, indicating that a tidal node existed in the southern Hangzhou Bay; (2) Formulae, HS2/HM2 >0.4 and gM2-(gK1+gO1)=270° (where H and g are harmonic constants), could be used as judging criteria for high and low tidal level diurnal inequalities; (3) The duration difference between ebb and flood tides could be roughly assessed by the ratio of HM4 vs. HM2; and the larger the ratio is, the bigger the duration difference is. At the same time, the duration period could be assessed by 2gM2-gM4, the epoch difference between M2 and M4 tidal constituents. If 2gM2-gM4 <180°, then the ebb duration is longer than the flood duration; if 180°< 2gM2-gM4 <360°, the result is reversed; (4) Taking Dinghai station as a center point, the highest tidal levels and the average high tidal levels, as well as the average tidal ranges at all stations became higher and larger both southeastwards and northwestwards, while the lowest tidal levels and the average low tidal levels appeared to be lower both southeastwards and northwestwards; and (5) The tidal patterns were not all in line with the tidal current patterns. As a conclusion, the smallest tidal range occurred in the narrow part of the venturi-shaped area. Along the both sides of the area, the highest tidal level and tidal range became higher and larger, while the lowest tidal level became lower with the increase of the distance from the narrow throat area. This is somehow different from the theory that the tidal level increases gradually when it moves towards the top narrow area of a V-shaped bay or estuary.  相似文献   

19.
Current data from three moored Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea at sites A (1-24.17°E, 34.82°N), B (122.82°E, 35.65°N) in summer 2001 and site C (120.85°E, 34.99°N) in summer 2003 were analyzed in this paper. Features of the tidal and residual currents were studied with rotary spectral and cross-spectral methods. Main achievements were as follows: 1) Tides dominated the currents. At sites A and B, the semidiurnal tidal current was basically homogeneous in the whole depth, taking a clockwise rotation at site A, and near-rectilinear counterclockwise rotation at site B; while the diurnal tidal current was strong and clockwise near the surface, but decreased and turned counterclockwise with depth; at site C, semidiurnal tidal current dominated and diurnal current took the second, both of which were counterclockwise and vertically homogeneous. Inertial motion contributed to the clockwise component of diurnal fluctuations; 2) The 3-5d fluctuation of residual current w  相似文献   

20.
Zhang  Yanwei  Liang  Xinfeng  Tian  Jiwei  Yang  Lifen 《中国海洋湖沼学报》2009,27(1):129-134
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean. Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号