首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To understand the influence of Kuroshio intrusion on the phytoplankton community,a field investigation was conducted in spring 2017 in the East China Sea(ECS),and 130 seawater samples were collected and analyzed.Trichodesmium comprised the highest cell abundance contributing about 66%of the total phytoplankton followed by diatoms(17%) and dinoflagellates(16%).The dominance of the Kuroshio Waters(KW) and the Taiwan Warm Currents(TWC) were higher than the Coastal Waters(CW).The vertical distribution of physicochemical parameters depicted the intrusion of KW at the bottom layer,but it failed to reach the surface as strong upwelling was not initiated.Therefore,the dissolved inorganic phosphate(DIP) concentrations and P/N ratios were the lowest in the CW and the upper water layers,which limited the diatom growth in this area.Besides,the dinoflagellates cell abundance was also lower except in the surface and CW,though they comprised the maximum richness of species among the phytoplankton community.However,the unique characteristics such as diazotrophy and gas vacuoles of Trichodesmium made the situation advantageous,and they comprised the maximum cell abundance in this area especially in KW and the TWC.Temperature,DIP and P/N ratios appeared to be the major environmental drivers for Trichodesmium proliferation in the ECS during the study period.  相似文献   

2.
Variations in physical-chemical factors, species composition, abundance and biomass of nano- and micro-phytoplankton assemblages, as well as their responses to environmental factors, were investigated over a complete cycle (6 months) in a semi-enclosed shrimp-farming pond near Qingdao, northern China. The aim was to establish the temporal patterns of phytoplankton communities and to evaluate protists as suitable bioindicators to water quality in mariculture systems. A total of 34 taxa with nine dominant species were identified, belonging to six taxonomic groups (dinoflagellates, diatoms, cryptophyceans, chlorophyceans, euglenophyceans and chrysophyceans). A single peak of protist abundance occurred in October, mainly due to chlorophyceans, diatoms and chrysophyceans. Two biomass peaks in July and October were primarily due to dinoflagellates and diatoms. Temporal patterns of the phytoplankton communities significantly correlated with the changes in nutrients, temperature and pH, especially phosphate, either alone or in combination with NO3-N and NH3-N. Species diversity, evenness and richness indices were clearly correlated with water temperature and/or salinity, whereas the biomass/abundance ratio showed a significant correlation with NO3-N. The results suggest that phytoplankton are potentially useful bioindicators to water quality in semi-enclosed mariculture systems.  相似文献   

3.
A severe Cochlodinium geminatum red tide (>300 km2) was observed in the Zhujiang (Pearl) River estuary, South China Sea in autumn 2009. We evaluated the environmental conditions and phytoplankton community structure during the outbreak. The red tide water mass had significantly higher dissolved inorganic phosphate (DIP), ammonia, and temperature, but significantly lower nitrite, nitrate, dissolved inorganic nitrogen (DIN), and DIN/DIP relative to the non-red-tide zones. The phytoplankton assemblage was dominated by dinoflagellates and diatoms during the red tide. C. geminatum was the most abundant species, with a peak density of 4.13×107 cell/L, accounting for >65% of the total phytoplankton density. The DIN/DIP ratio was the most important predictor of species, accounting for 12.45% of the total variation in the phytoplankton community. Heavy phosphorus loading, low precipitation, and severe saline intrusion were likely responsible for the bloom of C. geminatum.  相似文献   

4.
The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters.In this study,phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009.It was found that dinoflagellates,Prorocentrum donghaiense and Karenia mikimotoi,and diatoms,Skeletonema spp.and Paralia sulcata,were the major taxa dominating the phytoplankton community.Cluster analysis,non-metric multidimensional scaling(NMDS) and analysis of similarities(ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples.The analyses categorized the samples into three groups at a similarity level of 30%.Group Ⅰ was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region.Group Ⅱ,which was dominated by the diatom Skeletonema spp.and represented the red tide of Skeletonema spp.,was situated around Group Ⅰ in the sea area west of 122°50'E.Group Ⅲ was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups Ⅰ and Ⅱ.Group Ⅲ was further divided into two subgroups(Ⅲ-S1 and Ⅲ-S2) at a similarity level of 40%.Group Ⅲ-S1 was characterized by the presence of the benthic diatom P.sulcata,representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling.GroupⅢ-S2 was dominated by dinoflagellates and represented red tides formed by P.donghaiense and K.mikimotoi.A gradual change of red-tide causative species was observed from the estuary to the offshore sea area,from diatoms to armored dinoflagellates and then unarmored dinoflagellates.Environmental factors associated with each group,and thus affecting the distribution of phytoplankton and red tides,are discussed.  相似文献   

5.
To better understand the spatial-temporal variation in phytoplankton community structure and its controlling factors in Jiaozhou Bay,Qingdao,North China,four seasonal sampling were carried out in 2017.The phytoplankton community structure and various environmental parameters were examined.The phytoplankton community in the bay was composed of mainly diatoms and dinoflagellates,and several other species of Chrysophyta were also observed.Diatoms were the most dominant phytoplankton group throughout the year,except in spring and winter,when Noctiluca scintillans was co-dominant.High Si/N ratios in summer and fall reflect the high dominance of diatoms in the two seasons.Temporally,the phytoplankton cell abundance peaked in summer,due mainly to the high temperatures and nutrient concentrations in summer.Spatially,the phytoplankton cell abundance was higher in the northern part of the bay than in the other parts of the bay in four seasons.The diatom cell abundances show significant positive correlations with the nutrient concentrations,while the dinoflagellate cell abundances show no correlation or a negative correlation with the nutrient concentrations but a significant positive correlation with the stratification index.This discrepancy was mainly due to the different survival strategies between diatoms and dinoflagellates.The Shannon-Wiener diversity index(H')values in the bay ranged from 0.08 to 4.18,which fell in the range reported in historical studies.The distribution pattern of H' values was quite different from that of chlorophyll a,indicating that the phytoplankton community structure might have high biomass with a low diversity index.Compared with historical studies,we believe that the dominant phytoplankton species have been changed in recent years due mainly to the changing environment in the Jiaozhou Bay in recent 30 years.  相似文献   

6.
A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor,Hong Kong in 2 000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography(HPLC) analysis of phytoplankton pigments. During the bloom,the density of dinoflagellates was 1.1×106 cells L-1 within the patch and 8.6×105 cells L-1 outside the patch where the phytoplankto...  相似文献   

7.
A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor, Hong Kong in 2 000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography (HPLC) analysis of phytoplankton pigments. During the bloom, the density of dinoflagellates was 1.1×106 cells L−1 within the patch and 8.6×105 cells L−1 outside the patch where the phytoplankton community was dominated by diatoms. After the bloom the S. trochoidea began to decrease in density and was replaced by diatoms as the dominating bloom-causing organisms at all stations, and the density of dinoflagellates at most stations was less than 1.0 × 106 cells L−1. The status of S. trochoidea as the causative species of the bloom was indicated by the presence of peridinin, the marker pigment for dinoflagellates. The shift from dinoflagellates to diatoms was marked by the decline of peridinin and the prevalence of fucoxanthin. Phytoplankton pigment markers also revealed the presence of other minor phytoplankton assemblages such as cryptomonads and blue-green algal.  相似文献   

8.
The species composition, horizontal distribution and seasonal succession of the phyto-plankton at five sampling stations in the channel between Dongting Lake and the Changjiang River, China were studied from May 1995 to December 1997. A total of 416 taxa were observed; diatoms comprised the most diverse taxonomic group representing 58.2 % of the total species. The β-mezotrophic indicators were 92 taxa or 22 % of the total, the a-mezotrophic or α, β-eutrophic indicators decreased distinctly to 20 taxa or 4.8 % of the total. The species number and composition of various phyla were approximately similar at Stations 1, 2, 3 and 4, but at Station 5 the number of species was the minimum and the ratio of diatoms to total phytoplankton in the number of species was the highest. In seasonal succession of the phytoplank-ton species, the number was the highest in May and June, lower in December, January, March and July in the channel. The dominant species were different in different months. The ratio of diatoms species number to blue green algae and green algae species number diminished gradually from winter to summer and autumn, and then increased gradually from autumn to winter and early spring in the annual cycle. Margalef, Simpson and Shannon—Weaver diversity indices changed in different months, their values were higher in winter, lower in summer. Nygaard‘s diatoms quotients were lower in winter, then in spring and autumn, higher in summer. These results indicated that the water quality was the best in winter, better in spring and autumn than in summer. The relationship between the structure of the phytoplankton communi-ty and the water environmental quality was discussed.  相似文献   

9.
Community structure changes of macrobenthos in the South Yellow Sea   总被引:3,自引:0,他引:3  
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.  相似文献   

10.
Previous studies have indicated that the Yellow Sea underwent significant environmental changes during the Holocene, but many questions remain concerning the timing of the establishment of the modern circulation system, which would have major implications for the Yellow Sea ecosystem and carbon cycle. In this study, marine and terrestrial biomarkers were analyzed in Core YE-2 from a muddy area in the southern Yellow Sea to reconstruct Holocene environmental and phytoplankton community change. The content of three individual marine phytoplankton biomarkers (alkenones, brassicasterol and dinosterol) all display a similar trend, and their total contents during the early Holocene (362 ng/g) were lower than those during the mid-late Holocene (991 ng/g). On the other hand, the contents of terrestrial biomarkers (C27+C29+C31n-alkanes) during the early Holocene (1 661 ng/g) were about three times higher than those during the mid-late Holocene (499 ng/g). Our biomarker results suggest that the modern circulation system of the Yellow Sea was established by 5-6 ka, and resulted in higher marine productivity and lower terrestrial organic matter inputs. Biomarker ratios were used to estimate shifts in phytoplankton community structure in response to mid-Holocene (5-6 ka) environmental changes in the Yellow Sea, revealing a transition from a dinoflagellate-diatom dominant community structure during the early Holocene to a coccolithophore-dominant community structure during the mid-late Holocene.  相似文献   

11.
The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Changjiang (Yangtze) River, China. In total, 267 diatom taxa and two silicoflagellate species were identified from the sediments. The spatial variations in abundance and diversity were classified into three distinct geographic patterns using Q mode clustering: a south-north geographic pattern, a coastal-offshore pattern and a unique pattern in the Changjiang River mouth. The south-north geographic pattern was related to the spatial variations in sea temperature. Coscinodiscus oculatus, a warm-water species, indicated these variations by a gradual decrease in abundance from the south to the north. The coastal-offshore pattern was in response to the spatial variations in salinity. Cyclotella stylorum, Actinocyclus ehrenbergii and Dictyocha messanensis, the dominant brackish species in coastal waters, significantly decreased at the isobaths of approximately 30 m, where the salinity was higher than 31. Paralia sulcata and Podosira stelliger indicated the impact of the Yellow Sea Warm Current in the central Yellow Sea. The unique pattern in the Changjiang River mouth showed the highest species diversity but lower abundance, apparently because: freshwater input can significantly increase the proportion of brackish species; nutrients can supply the growth of phytoplankton; and high sedimentation rates can dilute the microfossil abundance in the sediments. Our results show that an integration of environmental factors (e.g., nutrient levels, sedimentation rate, sea temperature, salinity and water depth) determined the spatial characteristics of the siliceous microfossils in the surface sediments.  相似文献   

12.
One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01 × 106 ind./L, and the highest value was 14.72 × 106 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiscus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance of Stephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.  相似文献   

13.
The Yellow Sea (YS) environmental and ecological changes during the Holocene are driven by the interactions between the Yellow Sea Warm Current (YSWC), the East Asian Winter Monsoon (EAWM) and the Kuroshio Current (KC). We report marine biomarker records of brassicasterol, dinosterol and C37 alkenones in core ZY1 and core ZY2 from the South Yellow Sea (SYS) to reconstruct the spatial/temporal variations and possible mechanisms of phytoplankton primary productivity and community structure changes during the Mid-late Holocene. The contents of the corresponding biomarkers in the two cores are similar, and they also reveal broadly similar temporal trends. From 6 kyr to 3 kyr, the biomarker contents in the two cores were relatively low with small oscillations, followed by a distinct increase at about 3 kyr indicating productivity increases caused by a stronger EAWM. The alkenone/brassicasterol ratio (A/B) is used as a community structure proxy, which also showed higher values in both cores since 3 kyr, indicating increased haptophyte contribution to total productivity. It is proposed that the YS community structure has been mainly influenced by the YSWC, with stronger YSWC influences causing an increase in haptophyte contribution since 3 kyr. Some differences of the biomarker records between ZY2 and ZY1 suggest spatial variations in response to YSWC and KC forcing. When the KC was intensified during the periods of 6–4.2 kyr and 1.7–0 kyr, the YSWC extended eastward, exerting more influence on core ZY1. On the other hand, when the KC weakened during 4.2–1.7 kyr, the YSWC extended westward, exerting more influence on the ZY2.  相似文献   

14.
I Introduction Phytoplankton play an important role in the primary production of ocean (Ning et al., 1995). They are impor-tant biological mediators of carbon turnover in seawater ecosystems (Zhu et al., 1993). Phytoplankton in Jiaozhou Bay have been preliminarily studied on the subjects of community structure, primary productivity and carbon budget (Qian et al., 1983; Guo et al., 1992; Jiao et al., 1994). It has been found that seasonal variation of phytoplankton cell abundance presents w…  相似文献   

15.
Relationships between phytoplankton community composition and environmental variables in the East China Sea (ECS) and Yellow Sea (YS) were investigated using geochemical and molecular microbiology methods. The diversity of phytoplankton was characterized using cultivation-independent PCR-based denaturing gradient gel electrophoresis (DGGE). Groups resulting from unweighted pair-group method with arithmetic averages clustering of the DGGE profiles showed good consistency with the eco-environmental characteristics of the sea area they belonged to. Additionally, the clustering results based on DGGE fingerprinting and those based on morphological compositions were practically identical. The relationship of phytoplankton diversity to environmental factors was statistically analyzed. Temperature, dissolved inorganic nitrogen (DIN), and silicate-Si were found significantly related to the phytoplankton community composition. Canonical correspondence analysis (CCA) was performed to reveal the relationship between community composition and these three environmental factors. Generally, values of the ECS are clearly separated from those of the YS in the CCA biplot, due to mainly the effect of temperature and DIN.  相似文献   

16.
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010–July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1, 256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H′) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H′ value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagellates was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.  相似文献   

17.
Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A total of 562 macrobenthic species were identified, with polychaetes and mollusks accounting for 67% of the total number of species. A similarity percentage(SIMPER) analysis showed that the dominant species were bivalve mollusks in the Yellow Sea and small-sized polychaetes in the East China Sea. A two-factor analysis of variance showed significant seasonal variations in species number, density and diversity index, and significant regional differences of biomass and density. Two-factor community similarity analysis also showed significant seasonal and regional differences in macrobenthic communities. Canonical correspondence analysis indicated that the main environmental factors af fecting the macrobenthic communities were water depth, temperature, dissolved oxygen, and inorganic nitrogen. The results demonstrate significant regional differences and seasonal variations in macrobenthos in the two seas. Sediment properties and water mass characteristics are speculated to be the causes of regional differences.  相似文献   

18.
Aureococcus anophagefferens caused brown tides for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, with numerous, widespread ecological and economic impact on ecosystems. To understand the population dynamics of nanoplankton during the brown tides, sequences of the V9 region of the 18 S rDNA gene, used as a marker, were analyzed by Illumina sequencing to assess nanoplankton biomass, and real-time fluorescence quantitative PCR was performed to analyze spatial variation in the 18 S rDNA copy concentrations of nanoplankton off the Qinhuangdao coast in July, 2011. The results showed that A. anophagefferens and Minutocellus polymorphus were the dominant species in the local phytoplankton community during the brown tide in July 2011. The highest 18 S rDNA copy concentrations of A. anophagefferens and M. polymorphus were detected at stations SHG and FN, respectively. The central area most strongly affected by the brown tide migrated southward from 2011 to 2013. Redundancy analysis(RDA) showed that the decreasing NOx concentration might provide suitable nutrient conditions for the A. anophagefferens outbreak. During the brown tide caused by A. anophagefferens, other phytoplankton, such as diatoms, cryptophytes, chlorophytes, dinoflagellates and other flagellates, could co-occur with it. For zooplankton, due to less selective feeding behavior, Amoebozoa was the most abundant zooplankton at station SHG, while Ciliophora was the most abundant zooplankton at other stations for its more selective feeding.  相似文献   

19.
The study provides one of the first lines of evidence showing linkages between Antarctic phytoplankton abundance and composition in response to ENSO, based on historical reconstruction of sediment biomarkers. In addition to sediment biomarkers, field measured and remote sensing data of phytoplankton abundance were also recorded from Prydz Bay, Eastern Antarctica. Com-munity structure of field measured phytoplankton showed significant El Ni?o/La Ni?a-related succession during 1990 to 2002. In general, the number of algae species decreased during El Ni?o and La Ni?a years compared to normal years. Austral summer monthly variation of remotely sensed chlorophyll-a (Chl-a), particulate organic carbon (POC), and sea surface temperature (SST) indicated that ENSO impacted the timing of phytoplankton blooms during 2007 to 2011. Phytoplankton blooms (indicated by Chl-a and POC) preceded the increases in SST during El Ni?o years, and lagged behind the SST increases during La Ni?a years. Stratigraphic record of marine sedimentary lipid (brassicasterol, dinosterol and alkenones) biomarkers inferred that the proportions of different algae (diatoms, dinoflagellates and haptophytes) changed significantly between El Ni?o and La Ni?a events. The relative proportion of diatoms increased, with that of dinoflagellates being decreased during El Ni?o years, while it was reversed during La Ni?a years.  相似文献   

20.
This study investigates the migration and distribution of the warm-temperate fish Nibea albiflora. Their spawning migration and wintering migratory routes within in the Yellow Sea are described in detail. Considering the main physical features and environment of the Yellow Sea, it appears to be have one wintering ground and three migratory routes from the wintering ground to the spawning grounds. The fish begin to migrate from the wintering ground to the spawning grounds in the northwest region of the Yellow Sea in late March. The Yellow Sea has three spawning grounds. The first is located near the Yalu River on the Liaodong Peninsula and the second one is located in Rushan Bay of Shandong Peninsula. The third spawning ground is located in Haizhou Bay in the southern region of the Yellow Sea. This study found that the temperature of the Yellow Sea influences the migration of N. albiflora, and that the migratory routes coincide with the thermal fronts in the sea. Nutrients for juvenile fish are taken from the coastal upwelling area. Chlorophyll is a good environmental indicator of phytoplankton biomass and thereby provides the status of biological resources. Different types of sediment in near-shore zones are also of practical significance for the growth of fish. The study of the effects of marine environments on the migration of various fishes is not only significant to the fishing industry, but can also provide a scientific basis for the understanding of the ecological implications of the relevant physical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号