首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2009年4月9—12日黄海海域发生了一次受高压系统影响的海雾过程。利用卫星观测与探空数据、WRF模式(Weather Research and Forecasting Model)对此次海雾过程及相伴的大气波导进行了观测分析与数值模拟。海雾与波导发展可分为3个阶段:(1)大气波导先于海雾存在于黄海海面;受高压下沉影响,黄海上空存在逆温层和较强的湿度梯度,表现为较强的贴海表面波导和非贴海表面波导。(2)海雾始于高压西部,并随高压系统逐渐东移减弱,向黄海北部扩展;辐射冷却虽然使雾顶附近逆温增强,但海雾的机械湍流使其顶部湿度梯度减小,雾顶附近对应弱悬空波导或波导消失。(3)高压系统影响使干空气下沉到雾区导致黄海海雾消散;雾顶附近逆温仍存在,同时湿度梯度增大,黄海上空逐渐变为非贴海表面波导。本研究结果表明:高压系统不仅极易为波导的发生提供有利条件,而且有利于海雾的生成,在海雾演变过程中主要是雾顶水汽梯度的变化导致了波导类型及强度的变化。  相似文献   

2.
一次海雾过程大气波导形成机理的数值研究   总被引:1,自引:0,他引:1  
依据船舶导航雷达与沿岸气象探空观测数据得知,2005年6月1~3日黄海海域发生了1次大范围波导现象;进一步结合卫星云图与沿岸测站水平能见度观测,发现此次波导伴随1次明显的平流海雾过程。利用WRF模式对此次海雾与波导过程进行了数值模拟,发现:(1)海雾始于黄海中部,绝大部分海雾的雾顶由于弱逆温、湿度梯度较小而不存在波导;(2)雾区随其北部低压的逐渐东移而向东扩展,呈现西部薄、东部厚的结构,雾体顶部由于存在逆温与湿度锐减而形成了波导,混合均匀的雾体则成为波导基础层,薄雾顶部为非贴海表面波导,而厚雾顶部则为悬空波导;(3)雾区受低压西部冷空气的影响向南消退,波导基础层逐渐变薄乃至消失,雾体之上的逆温与湿度锐减层随之下降,非贴海表面波导被强度较弱的贴海波导所替代。分析结果表明:黄海平流海雾与波导有密切的联系,海雾形成及其发展改变了海洋大气边界层的温度与湿度垂直结构,从而导致了波导的发生与演变,大气波导可认为是海雾的"副产品"。  相似文献   

3.
一次春季黄海海雾和东海层云关系的研究   总被引:2,自引:1,他引:1  
张苏平  刘飞  孔扬 《海洋与湖沼》2014,45(2):341-352
结合多种观测数据和数值模拟结果对2011年3月12—13日的一次黄海海雾过程进行分析。观测数据分析表明:此次黄海海雾过程与东海层云之间存在密切的联系。地面高低压位置为水汽从层云区向北输送提供了有利的环流条件;黄海上空天气尺度下沉运动,加强了海洋大气边界层(MABL)层结的稳定性,MABL顶自南向北高度降低,有利于水汽在向北输送过程中不断向海面聚集;下沉导致的干层以及逆温层对海雾的发生发展起重要作用。模式结果进一步证明天气尺度下沉运动与MABL内的下沉在29°—30°N附近同位相叠加,使得该海区上空的下沉运动明显增强,边界层高度迅速下降。下沉可能会导致气块温度升高,云滴蒸发,来自层云区的水汽随流场向北向下输送逐渐接近冷海面凝结成雾,近海面水汽的平流输送使海雾进一步向北发展。本研究为海雾预报提供新的参考思路。  相似文献   

4.
王紫竹  胡松  刘旺 《海洋预报》2020,37(1):33-42
根据海上浮标实测数据和再分析数据,发现2016年4月20-23日长江口航道附近南北海雾存在的显著空间差异主要受到水汽以及风场的影响。分析表明:(1)本次海雾过程高空受低压槽控制近地面处低压过境,切变线东移导致低空风向的迅速转变,此后受到暖锋影响,导致短时小雨过程的发生;(2)此次海雾过程受风场的影响较大,盛行南风时水汽充足,湿度较大,容易产生海雾,受西北风主导时,则容易出现海雾消散的情况;(3)长江口外北部站点和南部站点存在显著空间差异性,北部站点能见度明显好于南部站点,并且在此次海雾过程中北部站点先于南部站点出现一次能见度好转的情况,这是由于低压过境导致风向骤变,北部未获得充分的水汽供给所致。此次低压槽天气过程在长江口南北产生区域差异显著的海雾,对这种典型风向骤变过程分析有助于为航运密集的长江口海雾预报提供参考。  相似文献   

5.
利用站点观探测资料、气象卫星资料和ERA-Interim数据对2017年2月21日下午到23日早晨海南岛东部沿海一带出现的一次海雾过程进行成因分析。结果表明:(1)此次海雾具备辐射和平流两种性质,海雾生命周期中,层云和海雾发生4次相互转化,而新一轮冷空气使海雾过程结束;(2)海雾发生在入海变性的高压脊天气系统中,100~200 m有逆温层存在,为海雾的生成维持提供较好的背景环境;(3)海雾期间边界层高度小于300 m,边界层适度的抬升有利于海雾生成和维持;(4)低层偏南风为海南岛东部海面输送水汽和热量。在海雾生成发展阶段,感热输送大于潜热,而消散阶段潜热输送大于感热。风场输送的热量增大海气温差,增强湍流热量输送,造成降温增湿使海雾生成维持。  相似文献   

6.
2010年2月一次冬季黄海海雾的成因分析   总被引:1,自引:0,他引:1  
利用青岛浮标观测、自动气象站观测、Micaps站点观测、L波段雷达等观测数据,New Generation SST,OI-SST和NCEP提供的FNL和CFSR再分析数据。并利用中尺度模式WRF对这次冬季海雾进行诊断分析。得到以下结论:(1)观测表明,这次海雾首先在黄海北部生成,是由于冷暖空气在黄海海域交汇,增大相对湿度,形成混合雾。在22日12:00时(UTC)之后,暖平流北上,冷平流消失。海雾逐渐转成平流冷却雾。青岛出现的海雾是从黄海发展过来的,并且为平流冷却雾。(2)在黄海,冷暖空气混合增大相对湿度,生成混合雾。与后期的平流冷却雾相比,混合雾的高度明显偏低。(3)海温异常偏低。在2010年2月渤海大面积结冰,海温偏低可能与融冰有关系。(4)模式结果表明,混合雾与冷水域的关系密切。平流冷却雾与冷水域的位置基本一致。混合雾和平流冷却雾都受海温影响较大。混合雾雾区变化很大,因为冷空气在移动过程中变性,不利于混合雾生成。冷海面对平流冷却雾起着很关键的作用。这次冬季海雾与春夏季黄海海雾的不同点在:这次海雾的发生机制不同于典型的春夏季黄海海雾。春夏季典型的黄海海雾主要是平流冷却雾,而这次冬季海雾在生成上首先是混合雾,后来转为平流冷却雾。  相似文献   

7.
基于WRF(Weather Researchand Forecasting)模式及其3DVar(3-DimensionalVariational)模块,发展了一套多普勒雷达径向风数据的同化方案。针对2次黄海海雾个例展开了一系列同化效果对比数值试验,详细分析了同化雷达径向风数据对雾区产生改进的原因。研究结果表明:(1)仅同化常规观测数据不足以纠正初始场中海上大气边界层湿度偏干的状态,导致海雾模拟失败或雾区严重偏小,因此在同化多普勒雷达径向风数据之前,必须先同化从海雾卫星观测中提取的湿度信息;(2)同化多普勒雷达数据不仅显著地直接改进了近海面大气流场,而且会间接改善温度场,从而进一步提高海雾的模拟效果——2次海雾个例模拟雾区的ETS(Equitable Threat Score)评分改进率分别达到66.7%与62.1%;(3)黄海海雾数值模拟中首先要改进海上大气边界层的湿度与温度层结,在此基础上进一步改进近海面大气流场十分必要。  相似文献   

8.
选取2012年4月14日的一次存在东西2片雾区的黄海春季海雾为研究对象,借助WRF(Weather Research and Forecasting)模式,采用循环3DVAR(3-Dimensional Variational)数据同化方案,考虑了湿度控制变量的背景误差协方差CV6,进行了AIRS(Atmospheric Infrared Sounder)卫星温度与湿度廓线数据的同化试验,并基于同化试验结果探讨了此次海雾的形成机制。同化试验结果表明:同化AIRS卫星温度与湿度廓线数据后,模式能成功再现海雾的形成过程,特别是东西2片雾区之间的晴空区的存在,这归功于AIRS数据的同化能够显著改善海上大气边界层的温湿结构、影响海雾的低层高压的范围与强度;机制分析揭示:东西2片雾均为典型的平流冷却雾,但二者厚薄和气团来源不同;海上高压控制黄海西岸陆地的暖空气入海,受低海温的冷却作用降温先形成逆温层,然后逆温层底部生成了较薄的西侧雾区;来自黄海中部的空气向东北移动至朝鲜半岛西部海域,高压下沉增温形成一个顶部较高的稳定层,从而生成较厚的东侧雾区;高压中心下沉区内,近海面风速小使得机械湍流弱,空气增温与海温暖舌共同作用下使得近海面气海温差小,海雾无法生成导致了晴空区的存在。  相似文献   

9.
目前对海上雾分布的认识多基于沿岸测站和海上船舶、浮标观测,但这些数据非常稀少,且存在代表性和数据质量方面的问题,因此一直缺乏对海雾分布更全面、清晰的了解。卫星遥感数据空间均一、覆盖范围广、质量一致,具有对无云条件下大范围、离岸海雾监测的优势。本文通过分析算法检测出的1989-2008年黄渤海海雾及云的频数、分布百分率信息,得到了黄渤海海雾季节变化的较全面特征。除印证其他资料或研究的结论外,还发现:(1)黄海海雾频数随季节变化的幅度较渤海明显;(2)黄海、渤海海域存在冬季海雾多发时段;(3)海雾生消过程中有覆盖区变化的东传特征;(4)春夏雾季中存在黄海中部和西朝鲜湾两处海雾多发区,其中西朝鲜湾也是全年海雾最多的海域。另外,在样本充足的情况下,通过对检测出的低云、中高云覆盖百分率和海雾频数的分析统计,还能估算出黄海、渤海部分季节20年海雾发生的平均概率。  相似文献   

10.
利用多种观测资料、再分析资料和WRF模式,对2008年4月29-30日和5月2-3日两次黄海春季海雾进行对比分析,研究黄海海雾影响沿海地区的因素。分析表明:(1)两次海雾过程均属于平流冷却雾过程。在低层水平方向上,合理的高、低压配置,使气流持续地从暖湿海面输送到冷海面上,有利于形成深厚的海雾,进而在海风的作用下影响沿海地区。在垂直方向上,边界层内上干下湿的结构有利于海雾的发展与维持。(2)边界层内稳定持续的逆温层结构,使水汽在逆温层内累积,有利于海雾的发展与维持。雾顶的长波辐射冷却作用以及雾层内适度的湍流有利于海雾的发展与维持;而低层风速增大会引起机械湍流的迅速增长,进而导致海雾消散。(3)海雾影响明显时,对应黄海海域上空的暖平流较强,水汽通量较大,暖湿平流来源于较暖的海面。反之,对应黄海海域上空的暖平流较弱,水汽通量较小,暖湿平流来源于较冷的海面。  相似文献   

11.
利用各种观测资料和RAMS(Regional Atmospheric Modeling System)模式4.4版对2004年4月11日发生在黄海海域的一次海雾事件进行了研究。利用GOES(Geostationary Operational Environmental Satellite)-9和NOAA(National Oceanic and Atmospheric Administration)-14可见光卫星云图对海雾的发生范围、演变过程等进行了描述,并对海雾发生前的大气背景场和气海温差场进行了分析;利用青岛和韩国济州岛2个站的探空资料对海雾发生时低层大气的稳定度进行了分析;利用RAMS模式对本次海雾事件进行了模拟,并计算了大气的水平能见度分布。计算结果与卫星云图所显示的雾区范围分布吻合很好。  相似文献   

12.
本文利用地面气象站观测资料、青岛近海浮标站及自动气象站资料、卫星云图等数据,结合数值试验的结果,从观测分析、天气形势与边界层结构等方面,对2008年4月6—7日一次黄海西部离岸气流背景下形成岸滨雾过程的物理机制进行了分析与讨论。分析表明:(1)此次岸滨雾是来自陆地的暖湿空气被输送到冷海面凝结产生的。海雾生成前,偏南暖湿空气输送以及降水天气的条件,使离岸气流具有暖湿气流的性质。(2)在1 000hPa局地低压系统作用下,近地面风向转为离岸的偏北风,同时混合层厚度自陆地向海面降低,混合层内部气流离岸下沉至冷海面边界层内,水汽更容易在海面聚集饱和成雾,导致雾区随着离岸气流向南方海面上发展。数值试验进一步证明了离岸暖湿气流对岸滨雾生成过程的作用。该研究可为近海海雾预报提供重要参考。  相似文献   

13.
黄海春季海雾的年际变化研究   总被引:15,自引:0,他引:15  
利用黄海沿岸有代表性测站的常规观测资料和NCEP/NCAR资料,对黄海春季海雾年际变化进行了分析发现,雾多年份冬季环流减弱、低层流场向黄海为偏南向流入、中低层水汽充足、层结稳定;有雾时气温水温差在0.5—2.2℃范围内,地面风向以S-ESE为主。分析结果表明,在春季黄海雾形成过程中,高空环流提供了暖湿空气的输送条件,低层流场及地面风场的分布有利于来自西太平洋低纬地区的水汽向黄海海区输送;中低层水汽充沛,昙结稳定,水气温差在一定范围内有利于海雾的形成和维持。  相似文献   

14.
刘姝  高山红 《海洋科学》2021,45(6):79-91
基于2004—2018年的地面观测数据和大气再分析数据,探究了西太平洋副热带高压(简称西太副高)对黄海夏季海雾年际变化的影响。结果表明:1)黄海夏季海雾雾日数存在明显的年际变化;多雾年偏南水汽通量输入可以达到少雾年的2.54倍,水汽通量净收支约是少雾年的2.76倍。2)在对流层中低层,多雾年的水汽输送存在2个通道,分别源自南海与台湾岛东南的西太平洋;少雾年只存在一个源自南海的水汽输送通道,其位置与多雾年基本一致但水汽输送量略小一些。3)雾日数与西太副高的面积、强度指数呈显著负相关(相关系数分别为-0.47和-0.54);少雾年面积、强度指数分别为多雾年的3.2倍和4.7倍;多雾年西太副高的位置较少雾年向东北偏移约4.8°经纬距(西太副高西脊点与脊线交点的位置变化),东海以东存在一个深厚反气旋,有利于水汽从台湾岛东南的西太平洋海域输入黄海,这是多雾年的主要成因。  相似文献   

15.
利用湄洲湾及近海3个气象站1974~2003年和1个气象站1985~2003年的地面观测资料,统计分析了湄洲湾海雾的天气气候特征.湄洲湾海雾具有明显的年际变化,而且季节差异显著,其中2~5月是海雾的盛季.初步分析了湄洲湾海雾的成因,归纳得出2~5月该海湾海雾生成前的3种环流天气形势:锋面型、入海高压后部型、高压底部型.在对海雾生成的水文气象要素分析的基础上,得出了2~5月海雾发生的一般规律,为海洋预报和服务提供一定的参考依据.  相似文献   

16.
孙艺  杨悦  甄晴 《海洋预报》2020,37(3):54-61
利用2007—2018年CALIPSO卫星数据对春夏季黄海海雾的高度特征进行了统计,并借助MTSAT可见光卫星云图、"葵花8号"可见光卫星云图和KMA地面天气图对控制海雾产生的天气形势进行了分析,进一步讨论了各天气型下黄海海雾的高度特征。研究结果表明:(1)黄海海雾的平均雾顶高度是211 m,海雾高度最大值为370 m,大多数黄海海雾雾顶高度介于100~400 m;(2)7月的海雾雾顶高度高于其他月份,为260 m;(3)控制黄海海雾生成发展的主要天气型有入海变性高压型和大陆低压低槽东移型,入海变性高压控制下的弱偏南风区域的雾顶高度相对较高,大陆低压低槽控制下的槽前风速稍大区域的雾顶高度偏高。  相似文献   

17.
为精细化研究海雾垂直结构,提高WRF模式模拟海雾水平,利用FNL再分析数据和日平均SST数据驱动WRF模式对2014年2月1日-2日发生在黄渤海海域的一次海雾过程进行了数值研究,在对比实验选定模拟效果较好的参数化方案的基础上,对模式的垂直分层进行敏感性实验,降低前20层高度,分析了垂直分层数,边界层垂直精度对雾区模拟、海雾垂直结构模拟的影响。结果发现提高模式垂直精度后,模式对海雾的模拟能力有了较大提高。研究表明:44层以上的垂直分层下WRF模式能较好模拟黄渤海雾区的分布,增加模式边界层垂直精度可提高海雾能见度模拟效果,并一定程度上消除低云对雾区模拟的干扰。  相似文献   

18.
海雾严重影响舰艇航行,而且在雾中舰载激光武器和激光雷达的工作效能受到制约。因此,研究激光在雾中的衰减特性对军事行动具有重要的科学意义。基于WRF中尺度气象研究模式,对2015年3月28日-4月1日的海雾过程进行模拟分析,发现使得海雾维持的是黄海南部输送来的暖湿气流,随后一个很强的冷高压使得风向转北,干冷平流切断了水汽输送,破坏了逆温层结构,海雾消散。考虑到春季黄海海雾产生和消散的天气形势,在海雾刚产生时,下风区的激光衰减系数小;海雾维持过程中,海雾雾区的外围衰减系数小;海雾快要消散时上风区衰减系数小。研究发现,海雾可以使得10.6μm红外激光的探测距离大大减小,在浓雾情况下,探测距离仅为正常情况下的2%。  相似文献   

19.
春季(四至五月)是黄海海雾的多发季节,也是亚洲季风的转换季节。 本文对发生在1960-2006年春季的黄海海雾,及其雾气相关的天气特征和大气-海洋条件进行了综合分析。海雾根据I_COADS海面观测数据和同期NCEP/NCAR再分析资料风场的气流后向轨迹聚类分析,可进行气流路径分类。在气流路径分析的基础上,对春季黄海海雾的大尺度低层环流型及其相关的地表散度、湿度垂直分布、水汽水平输送及大气-海表温度差异进行了分析。主要结论总结如下:(1)导致春季黄海海雾形成的气流主要可分为四条路径。气流分别来自黄海的西北、东、东南和西南侧。(2)春季黄海海雾的发生有两种典型的天气型:黄海高压型(HSH)、气旋和反气旋耦合型(CAC)。两种天气型在四月份的出现比例大致相同;但在五月份HSH型的出现比例下降到三分之一左右,而CAC型上升到三分之二左右。(3)HSH和CAC两种天气型的共同特征是黄海位于地面散度中心。 (4)对于HSH型海雾,水汽主要来自局部蒸发,低层大气之上存在明显的干层;对于CAC型雾,水汽主要来自黄海以外,低层大气具有深厚的高湿度层。(5)由于天气型及其湿度垂直分布和水汽水平输送的差异,海雾可分为两类。多数的CAC型海雾为“暖”海雾,而HSH型海雾中的“暖”和“冷”海雾的比例几乎相同。  相似文献   

20.
黄海夏季海雾的边界层结构特征及其与春季海雾的对比   总被引:3,自引:0,他引:3  
利用海上浮标站、高分辨率数字式探空仪等多种观测手段和三维中尺度模式,对2008年7月7~11日1次夏季黄海海雾过程的边界层结构特征进行了观测分析与数值模拟,并将结果与春季的黄海海雾个例进行对比。结果表明:(1)夏季海洋大气边界层(MABL)中无强逆温层,静力稳定度较春季下降,有利于湍流的发展。加之水汽量较大,容易形成比较厚的雾(500 m);春季低空有明显逆温层,水汽供应量较少,但强稳定的层结可以使水汽局限于比较低的空中,形成比较薄的雾层(200 m)。(2)在夏季风控制下,青岛近海海洋大气边界层(MABL)中高、低层气块均来自海洋上空,温湿属性差异不大,使得温度垂直差异较小;春季MABL中高、低层气块分别来自陆地和海洋,来自陆地的暖、干气流和海洋的冷却效应导致强逆温层和雾区上方干层的出现。(3)夏季海雾的含水量大,水汽在凝结成雾的过程中放出更多的凝结潜热,雾中的海表面气温(SAT)明显高于海表面水温(SST);春季雾顶强烈的长波辐射冷却和湍流混合使雾中气温明显下降,雾中SAT与SST更加接近,甚至出现SAT小于SST。以上结果有助于对海雾形成机制的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号