首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 40Ar/39Ar stepwise crushing technique is applied for the first time to date garnet from ultra-high-pressure metamorphic (UHPM) eclogites. Three garnet samples from the Bixiling eclogites analyzed by 40Ar/39Ar stepwise crushing yield regular, predictable age spectra, and a clear separation between excess 40Ar and concordant plateau and isochron ages. All three age spectra begin with high apparent ages followed by step by step decreasing ages, and finally age plateaux with apparent ages in the range from 427 ± 20 to 444 ± 10 Ma. The data points constituting the age plateaux yield excellent isochrons with radiogenic intercept ages ranging from 448 ± 34 to 459 ± 58 Ma, corresponding to initial 40Ar/36Ar ratios from 292.1 ± 4.5 to 294.5 ± 6.7, statistically indistinguishable from the modern air. The high initial ages are interpreted to derive from secondary fluid inclusions containing excess 40Ar, whereas the plateau ages are attributed to gas from small primary fluid inclusions without significant excess 40Ar. The plateau ages are interpreted to approximate the time of garnet growth during initial UHPM metamorphism. Phengite analyzed by laser stepwise heating yielded a complicated two-saddle age spectrum with a scattered isochron corresponding to age of 463 ± 116 Ma and initial 40Ar/36Ar ratio of 1843 ± 1740 indicative of the presence of extraneous 40Ar within phengite. These concordant isochron ages measured on minerals diagnostic of eclogite grade metamorphism strongly suggest that Dabie UHPM eclogites were first formed in the early Paleozoic, during the same event that caused the Qinling-Northern Qaidam Basin-Altyn Tagh eclogites.  相似文献   

2.
The KAr isochron method is an attempt to obtain the initial age or reset age and the extraneous argon isotopic ratio of a suite of cogenetic samples of different K-contents. Some samples contain excess argon-40 and others lose argon-40. The resultant ages on single samples are not significant geologically. We have discussed the principles of three types of isochrons commonly used, the 40Ar vs 40K isochron, the 40Ar/36Ar vs 40K/30Ar isochron, and the 40Ar/36Ar vs 39Ar/36Ar isochron, and evaluated the first two types for ten different hypothetical cases. If a straight line is obtained in the 40Ar vs 40K isochron, a positive intercept indicates an approximately constant amount of excess argon, whereas a negative intercept indicates argon loss. A curved line or scattering of points indicates that the basic assumptions are not valid for the set of samples under consideration. The 40Ar/36Ar vs 40K/36Ar isochron method is valid, rigorously, only when all samples of the system under consideration have the same non-radiogenic argon isotope composition. This requires that either no excess argon is present in the system, or else each analysis contains the same proportion of excess and atmospheric argon. If these conditions do not hold, approximately, invalid ages and invalid intercepts are obtained. Any KAr isochron needs to be used with caution.  相似文献   

3.
王松山 《地质科学》1982,(2):226-234
常规的K-Ar法是基于40K通过K-层电子捕获衰变成40Ar*这一机理,应用衰变定律而定年的。它具有测定对象广、测定年龄范围大等优点,是同位素地质定年的主要方法之一。但是,由于40Ar*是气体,当岩石、矿物形成以后受到搅动时(如岩浆的侵入、构造活动、宇宙物质的冲击等),40Ar*容易丢失,使年龄值偏低。1962年由Sigurgeirsson提出的,后经Merrihue、Turner等人逐步完善的40Ar-39Ar快中子活化定年技术,很好地克服了K-Ar法的局限性。40Ar-39Ar定年分为两种:一是全熔融法(total fusion),样品被快中子照射后一次加热熔融,然后计算年龄,此值与常规K-Ar法结果相当;另一种是阶段加热法(step-heating),被照射的样品从低温到高温被逐步加热,分别计算各温度阶段的40Ar/39Ar视年龄,并进而得到一条年龄谱和一个坪年龄(plateau age)。后一种方法对研究地质体是否受过热的挠动、岩石矿物的早期结晶年代、后期热挠动次数、热挠动年代、岩石矿物对氢的保存性、过剩氩的存在状态等具有独特作用,它开辟了同位素地质年代学的一个新领域。本文将着重介绍应用40Ar-39Ar阶段加热技术研究地球物质及陨石受热历史的某些成果。  相似文献   

4.
K–Ar and 40Ar/39Ar ages have been measured on nine mafic volcanic rocks younger than 1 myr from the Snake River Plain (Idaho), Mount Adams (Washington), and Crater Lake (Oregon). The K–Ar ages were calculated from Ar measurements made by isotope dilution and K2O measurements by flame photometry. The 40Ar/39Ar ages are incremental-heating experiments using a low-blank resistance-heated furnace. The results indicate that high-quality ages can be measured on young, mafic volcanic rocks using either the K–Ar or the 40Ar/39Ar technique. The precision of an 40Ar/39Ar plateau age generally is better than the precision of a K–Ar age because the plateau age is calculated by pooling the ages of several gas increments. The precision of a plateau age generally is better than the precision of an isotope correlation (isochron) age for the same sample. For one sample the intercept of the isochron yielded an 40Ar/36Ar value significantly different from the atmospheric value of 295.5. Recalculation of increment ages using the isochron intercept for the composition of nonradiogenic Ar in the sample resulted in much better agreement of ages for this sample. The results of this study also indicate that, given suitable material and modern equipment, precise K–Ar and 40Ar/39Ar ages can be measured on volcanic rocks as young as the latest Pleistocene, and perhaps even the Holocene.  相似文献   

5.
柴北缘锡铁山榴辉岩退变质成因角闪石40Ar/39Ar年代学研究   总被引:2,自引:2,他引:0  
采用激光阶段加热40Ar/39Ar技术,对柴达木盆地北缘锡铁山榴辉岩退变质作用形成的榴闪岩和斜长角闪岩之角闪石进行了定年分析。09NQ44Amp来自榴闪岩,各阶段表观年龄(以现代空气氩40Ar/36Ar比值295.5扣除非放射性成因40Ar)构成了单调下降的阶梯状年龄谱。在反等时线图解上,2~4阶段数据点和5~18阶段数据点分别构成了两条等时线,等时年龄分别为427.6±10Ma和425.1±2.6Ma,对应的初始40Ar/36Ar比值则分别为435.2±6.1和705.3±13。角闪石09NQ43Amp来自榴辉岩强烈退变质作用形成的斜长角闪岩,40Ar/39Ar阶段加热分析也获得单调下降的年龄谱,在反等时线图解上其数据点3~6阶段和7~16阶段分别构成了两条等时线,等时年龄分别为418.9±2.9Ma和418.1±2.1Ma,对应的初始40Ar/36Ar比值则分别为493.7±2.8和685.8±34.3。等时线截距值高于现代大气40Ar/36Ar比值,表明角闪石中含过剩40Ar。同时,由低温和中-高温阶段加热数据点分别构成两条等时年龄基本一致,截距值却明显不同的等时线,表明在角闪石热力学性质不同的源区,存在两期明显不同且未混合的初始捕获Ar组分。等时年龄425~418Ma代表的是锡铁山榴辉岩角闪岩相退变质作用发生的时间。等时线图解法虽然有效的校正了角闪石中的过剩40Ar,但仅根据表观年龄图谱和等时线图谱还无法清晰判断过剩40Ar在角闪石中的赋存状态,有待进一步探讨。  相似文献   

6.
Mantle xenoliths provide direct information about lithospheric evolution and asthenosphere–lithosphere interaction, and therefore precise dating of the host basalts which carried the xenoliths is important. Here we report 40Ar/39Ar geochronology of phlogopite separates from five spinel lherzolite xenoliths collected from the North China Craton (Hannuoba of Hebei Province, Sanyitang of Inner Mongolia Autonomous Region and Hebi of Henan Province), as well as the groundmass of the host basalts. Argon extraction was performed by conventional step heating technique and ultra-violet laser ablation microprobe (UVLAMP) technique. 40Ar/39Ar incremental heating results on groundmass yielded geologically meaningless ages. However, conventional step heating on phlogopites produced Miocene cooling ages, identical to the eruption ages obtained from the K–Ar dating methods of the Hannuoba and Sanyitang basalts. Adopting procedures to exclude potential influence of excess radiogenic Ar from a deep fluid source on a phlogopite separate from lherzolite yielded results with a good agreement of ages suggesting that the argon isotopes are distributed homogenously in this mineral, with no influence of excess argon. Phlogopites from Hebi yield ages between 6.43 and 6.44 Ma which are slightly older than those obtained from K–Ar method on whole-rocks. The discrepancy in the K–Ar ages obtained from the altered whole-rock samples suggests partial loss of 40Ar. As a consequence, phlogopite Ar–Ar ages are considered more accurate than that of the whole-rocks. These results suggest that 40Ar/39Ar chronology of phlogopite provides reliable and precise 40Ar/39Ar ages of host basalts.  相似文献   

7.
《Chemical Geology》2002,182(2-4):583-603
New K/Ar ages based on 40Ar/39Ar incremental heating of <2- and 2–20-μm size fractions of the well-characterized, carbonate-bearing Heinrich layers of core V28-82 in the eastern North Atlantic are 846–1049 Ma, overlapping with conventional K/Ar ages from the same Heinrich layers on the Dreizack seamounts of 844–1074 Ma. This agreement suggests the equivalence of the methods in fine-grained terrigenous sediments. Additionally, Heinrich layer H2 yielded a 40Ar/39Ar-based K/Ar age of 970±4 from Orphan Knoll in the southern Labrador Sea, within the range found in eastern North Atlantic Heinrich layers. Thus, the K/Ar data are robust in their indication of a dominant Labrador Sea ice-rafted source to even the finest sediment fraction in the eastern North Atlantic during the massive detrital carbonate-bearing Heinrich events of the last glacial cycle (H1, H2, H4, H5). Close correspondence of the radiogenic argon concentration (40Ar*) from the de-carbonated <63-μm fractions from V28-82 with the <2- and 2–16-μm fractions from the Driezack seamounts demonstrates that this measurement is a rapid and reliable method for correlating these layers within their belt of distribution.A 40Ar/39Ar-based K/Ar age of 433±5 million years for H11 in V28-82 is within the range of published data from background sediments in the eastern North Atlantic, and is consistent with published results across this interval in the Driezack seamounts. In contrast, the 40Ar/39Ar-based K/Ar age of H11 in the western Atlantic core EW9303-JPC37 is 614±5 million years. A brick red sample from approximately the interval of H3 of core EW9303-GGC40 yielded a 40Ar/39Ar-based K/Ar age of 567±1 million years, comparable to the published range of 523–543 Ma from the 2–16-μm fractions from that interval on the Dreizack seamounts. Both JPC37 and GGC40 are located in the path of the North Atlantic Drift. The older ages from western samples of H3 and H11 may result from dilution of a Hudson Strait source or an elevated age from southeastern Laurentide sources.  相似文献   

8.
The paragenic minerals plagioclase,perthite,biotite,hornblende and pyroxene in acid-granite alkali-granite,monzonite and volcanic rocks collected from seven areas different in thermal history have been determined.On the basis of 14 plateau age spectra and isochron ages of paragenic miner-als in conjunction with the observed mineral textures ,the suitability of plateau age spectra of plagioclase and perthite and their thermo-chronological significance are discussed in this paper.The results indicate that undisturbed feldspar gives satisfactory^40Ar-^39Ar plateau ages in consis-tence with those of paragenic minerals.This means that feldspars from the undisturbed area are suita-ble for ^40Ar-^39Ar dating .On the other hand,the age spectra of feldspars as well as of biotite,pyroxene and hornblende affected by tectonic or thermodynamic events appear unsmooth at varying temperatures,thus complicating their interpretation.Feldspars may give an emplacement age of a rock and /or that of the latest thermodynamic event,depending on the intensity of the event and the retentivity of Ar in the mineral.  相似文献   

9.
石英~(40)Ar-~(39)Ar阶段加热法定年的实验技术改进及意义   总被引:5,自引:0,他引:5  
40 Ar 3 9Ar阶段加热法测定石英年龄始于 1986年。近年来通过样品清洗、提高真空度、提高质谱计灵敏度、减小样品用量、增加熔样阶段等实验技术改进 ,数据质量比过去有所提高。但关键问题是选择有代表性的石英样品 ,并预先对样品做镜下鉴定和电子探针分析 ,挑选钾含量较高的石英用于定年 ,以便减少失败 ,提高年龄数据测试的成功率。当钾含量高于 0 0 5 %时 ,一般都可在中温 (70 0~ 10 0 0℃左右 )阶段获得 3个以上视年龄构成的坪年龄和等时年龄 ,比过去马鞍型年龄谱中由一个最小视年龄作为成矿年龄要准确。  相似文献   

10.
辽宁小佟家堡子金矿床成矿时代探讨   总被引:12,自引:2,他引:10  
刘国平 《矿床地质》2002,21(1):53-57
小佟家堡子金矿床位于辽东金矿集中区,为产于古元古代变质岩系中的微细粒浸染型金矿,矿床类型独特。文章采用了绢云母^40Ar/^39Ar法对样品从450℃进行了8个阶段的加热分析。从绢云母石英交代岩型金矿石中挑选出与金矿化密切共生的绢云母单矿物,通过^40Ar/^39Ar快中子活化阶段加热法获得坪年龄为167Ma。绢云母^40Ar/^39Ar法测年结果与矿床的控矿构造特征、区域岩浆活动的演化规律相吻合,进一步证明了该金矿床为燕山期成矿。同时,绢云母^40Ar/^39Ar的马鞍形年龄谱还表明,在绢云母石英交代岩形成过程中,可捕获部分“过剩剩氩”,这可能是造成K-Ar法年龄值高、范围较大的原因之一。  相似文献   

11.
Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the 40Ar/39Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with 40Ar/39Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 ± 40 to 119 ± 23 ka (2σ uncertainties), which are in general equal to or younger than 40Ar/39Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 ± 54 ka and a 40Ar/39Ar age of 450 ± 40 ka. All of the U-Th/He ages, and all but one spurious 40Ar/39Ar ages conform to the previously proposed stratigraphy and published 14C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from 238U-230Th disequilibria. The U-Th/He and 40Ar/39Ar results agree best where there is a relatively large amount of radiogenic 40Ar (>10%), and where the 40Ar/36Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and 40Ar/39Ar ages do not agree within uncertainty. U-Th/He and 40Ar/39Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while 40Ar/39Ar results provide good precision even on ages as low as 19 ± 4 ka. Hence, the strengths and weaknesses of the U-Th/He and 40Ar/39Ar methods are complimentary for basalts with ages of order 100-500 ka.  相似文献   

12.
The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb (Bouvier et al., 2009a) and Lu-Hf ages (Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/36Ar component in maskelynite in ALH 84001 (40Ar/36Ar = 632 ± 90). The maskelynite 40Ar/39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ∼4.1 Ga. The data also place conservative upper bounds on the long-duration residence temperatures of the ALH 84001 and Nakhla protolith to be  °C and  °C over the last ∼4.16 Ga and ∼1.35 Ga, respectively. MIL 03346 has apparently not experienced significant shock-heating since it crystallized, consistent with the fact that various chronometers yield concordant ages.  相似文献   

13.
吴皓然 《地质与勘探》2022,58(4):798-808
内蒙古沙麦钨矿床位于中亚造山带东段(或称兴蒙造山带),矿体主要赋存在黑云母二长花岗(斑)岩内,主要矿化类型为伟晶岩型和云英岩型。本文利用40Ar/39Ar同位素测年方法对沙麦钨矿成矿阶段形成的白云母进行了年龄测定,获得白云母Ar-Ar坪年龄为138.4 ± 0.84 Ma,对应的正、反等时线年龄分别为137.32 ± 0.73 Ma和137.35 ± 0.73 Ma。所测坪年龄与正反等时线年龄具有很好的一致性,可以代表矿床钨矿体的形成年龄,表明该矿床的形成与沙麦地区燕山晚期的岩浆活动有关,这与区域上的成矿事件相吻合。结合区域地球动力学背景的研究成果,认为沙麦钨矿床形成于陆-陆碰撞造山后的陆内伸展环境。  相似文献   

14.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

15.
40Ar/39Ar incremental-release analyses were carried out on whole-rock and constituent white mica (illite)-rich size fractions (0.63–1 to 6.3–20 m) within two very-low grade, penetratively cleaved metatuffs of contrasting anchizonal metamorphic grade (northeastern Rheinisches Schiefergebirge, Federal Republic of Germany). One sample from the upper anchizone displays internally concordant 40Ar/39Ar spectra with plateau ages ranging between ca. 316 and 325 Ma. These are similar to conventional K-Ar ages determined for the whole-rock and size fractions. Together the isotopic results suggest that cleavage formed at ca. 320 Ma during a concomitant very-low grade metamorphism. This is consistent with biostratigraphic controls which suggest that metamorphism and cleavage formation occurred during the Westphalian.A metatuff sample from the middle anchizone records more internally discordant 40Ar/39Ar age spectra with total-gas ages ranging from 366 to 372 Ma. These are ca. 35–45 Ma older than corresponding conventional K-Ar ages, indicating marked recoil-loss of 39Ar occurred during irradiation. Transmission electron microscopy reveals that white mica grains within size fractions from the upper anchizone sample have clearly defined, straight edges whereas those within the middle anchizone samples are embayed and diffuse. This results in an increase in surface/volume ratio and therefore greater susceptibility for recoil-loss of 39Ar in the middle anchizone sample. Grain-edge morphology appears to be a major factor in determining the extent of recoil-loss of 39Ar during 40Ar/39Ar analysis of fine-grained size fractions.  相似文献   

16.
Quantitative techniques that link sediments to their sources are needed to understand a range of tectonic, climate, and anthropogenic driven Earth surface processes. Many provenance techniques exist for sand-sized material but fewer are available for fine-grained sediment archives. In this respect, bulk 40Ar/39Ar ages from silt-sized sediment show potential, but many questions remain about the significance of a bulk sediment 40Ar/39Ar age. We interrogate bulk sediment 40Ar/39Ar ages by step heating mixtures of well-constrained 40Ar/39Ar mineral standards crushed to silt-sized. Silt-sized end member components Alder Creek Sanidine, Taylor Creek Sanidine and Heidelberg Biotite all yield plateau ages within uncertainty of their coarse-grained counterparts. High-resolution step heating (as many as 43 steps) of the mineral mixtures shows that biotite degasses first at lower temperatures compared to the two sanidines that degas generally in concert. Concordant age steps develop at both low and high temperatures and the transition from the isotope signal being dominated by one mineral phase to another is clearly observed. We show that age spectra for the mineral standard mixtures can be modeled and predicted for all mixtures by assuming a (simplistic) Gaussian distributed release of Ar, and by using the degassing maxima, variance, K concentration, and 40Ar/39Ar age of each monitor mineral. Thus, bulk sediment 40Ar/39Ar ages can be robust indicators of the average cooling/crystallization age of all contributing K-bearing minerals to a depositional center. Furthermore, we discuss the potential to deconvolve individual mineral age populations by model inversion. The application of this bulk sediment provenance technique should not be considered a replacement for single grain analyses. It should be applied to environments that do not provide sand-sized sediment archives (e.g., distal terrigenous sedimentary archives) when information about source changes through time are more important than precise sediment source identification.  相似文献   

17.
Mingqin  He  Jiajun  Liu  Chaoyang  Li  Zhiming  Li  Yuping  Liu  Aiping  Yang  Haiqing  Sang 《中国地球化学学报》2004,23(4):342-348
40Ar−39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu−Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isochron age shown on the spectra are 56.53±0.43 Ma, 55.52±1.78 Ma and 55.90±0.29 Ma respectively. The age data are consistent with each other within 1σ uncertainties. Because the given initial40Ar/36Ar value of 294.7±1.14 is very close to Nier's value (295.5±5), both plateau and isochron ages may be considered as the forming time of quartz. So the age of 55.90–56.53 Ma represents the forming age of ore deposits. It is obvious that the ore deposits were formed during the Early Himalayan period. This research project was granted by the State Basic Research, Development and Planning Program (G1999043208) and the Foundation Projects of Yunnan Provincial Education Department (No. 0142104).  相似文献   

18.
The Mount Brome complex of the Monteregian province of southern Quebec, Canada, consits of several major intrusions ranging compositionally from gabbro to syenite. The relative ages of these intrusives have been investigated with high-resolution 40Ar/39Ar analyses, including a specially designed irradiation configuration to cancel the effects of fluence gradients. Small yet distinct apparent age differences are observed. While a number of analytical and geological factors could be proposed to explain the small variations, evaluation of these suggests the age differences reflect those in emplacement times. The gabbro and nepheline diorite were emplaced within a short span 123.1 Ma ago. Generally more evolved lithologies (biotite monzodiorite, pulaskite, nordmarkite) appear to have been emplaced within a restricted interval 1.4±0.3 Ma later. Whole-rock Rb-Sr systematics do not give acceptable isochrons because of significant scatter interpreted to reflect initial 87Sr/86Sr heterogeneities resulting from crustal contamination. Considering the variations in initial ratio, the Rb-Sr data are consistent with the 40Ar/39Ar age.  相似文献   

19.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

20.
KAr isochron techniques can provide, in principle, an experimental reconstruction of the time evolution of the atmospheric 40Ar/36Ar ratio if minerals can be found which contain samples of argon from the ancient atmosphere and which have had a simple geologic history. Authigenic sedimentary minerals with low potassium content appear to be the best candidates. An experimental reconstruction of the evolution of the atmospheric 40Ar/36Ar ratio will serve as a test of various models for the chemical and thermal evolution of the Earth.40Ar39Ar studies of five chert samples from the Swaziland sequence and the Bulawayan and Gunflint Formations indicate that lower Precambrian cherts do not contain appreciable samples of the ancient atmospheric argon and have experienced complicated geologic histories. The chert sample from the Kromberg Formation contains excess 40Ar. The other four samples yield age spectra which are complicated but which are interpretable in terms of geologically reasonable ages.The lack of evidence for argon loss in the chert data suggests that some cherts may prove to be datable sedimentary minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号