首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid (10 s) measurements of sediment transport and wind speed on the stoss slope of a transverse dune indicate that the majority of sand transported is associated with fluctuations in wind speed with a periodicity of 5–20 min duration. Increases in the sediment transport rate towards the dune crest are associated with a small degree of flow acceleration. The increase in wind speed is sufficient, however, to greatly increase values of the intermittency index ( γ ), so that the duration of saltation is extended in crestal regions of the dune. The pattern of sediment transport on the stoss slope and, therefore, the locus of areas of erosion and deposition change with the regional wind speed. Erosion of the crest occurs during wind speed events just above transport threshold, whereas periods of higher magnitude winds result in deposition of sand upwind of the crest, thereby increasing dune height. Although short-term temporal and spatial relations between sand transport and wind speed on the stoss slope are well understood, it is not clear how these relations affect dune morphology over longer periods of time.  相似文献   

2.
Wind tunnel experiments were carried out with respect to the vertical distributions of wind-blown sand flux and the processes of aeolian erosion and deposition under different wind velocities and sand supplies above beds with different gravel coverage. Preliminary results revealed that the vertical distribution of wind-blown sand flux was a way to determine whether the gobi sand stream was the saturated one or not. It had different significances to indicate characteristics of transport and deposition above gobi beds. Whether bed processes are of aeolian erosion or deposition was determined by the sand stream near the surface, especially within 0–6 cm height, while the sand transport was mainly influenced by the sand stream in the saltating layer above the height of 6 cm. The degree of the abundance of sand supply was one of the important factors to determine the saturation level of sand stream, which influenced the characteristic of aeolian erosion and deposition on gravel beds. Given the similar wind condition, the sand transport rates controlled by the saturated flow were between 2 and 8 times of the unsaturated one. Those bed processes controlled by the saturated flow were mainly of deposition, and the amount of sand accumulation increased largely as the wind speed increased. In contrast, the bed processes controlled by the unsaturated flow were mainly of aeolian erosion. Meanwhile, there was an obvious blocking sand ability within the height of 0–2 cm, and the maximal value of sand transport occurred within the surface of 2–5 cm height.  相似文献   

3.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

4.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

5.
Characterizing the height profile of the flux of wind-eroded sediment   总被引:4,自引:0,他引:4  
Wind erosion causes severe environmental problems, such as aeolian desertification and dust storms, in arid and semiarid regions. Reliable prediction of the height profile of the wind-eroded sediment flux is crucial for estimation of transport rates, verification of computer models, understanding of particle-modified wind flows, and control of drifting sand. This study defined the basic height profile for the flux of wind-eroded sediment and the coefficients that characterize its equation. Nine grain-size populations of natural sand at different wind velocities were tested in a wind tunnel to measure the flux of sediment at different heights. The resulting flux profiles resemble a golf club with a small back-turn where the flux increases with increasing height within 20 mm above the surface. If the small back-turns are neglected, the flux profiles can be expressed by an exponential-decay function where q r(z) is the dimensionless relative flux of sediment at height z, which follows the exponential-decay law proposed by previous researchers for aeolian saltation. Three coefficients (a creep proportion, a relative decay rate, and an average saltation height) are proposed to characterize the height profile. Coefficients a and b in the above equation represent the creep proportion and relative decay rate as a function of height, respectively. Coefficient a varies widely, depending on grain size and wind velocity, but averages 0.09. It is suggested that the grain size and wind velocity must be specified when discussing creep proportion. Coefficients a and b are nearly linearly correlated and decrease as grain size and wind velocity increase. The average saltation height (the average height sediment particles can reach) was a function of grain size and wind velocity, and was well correlated with coefficients a and b.  相似文献   

6.
We report results of experiments intended to test the validity of a model for aeolian saltation and the resulting pattern of deposition on the lee side of aeolian dunes. In steady sea-breeze conditions on a 3-m-tall dune at Point Año Nuevo, California, we measured simultaneously the near-brink wind speed and the deposition on both horizontal and lee face collector platforms. We then used the details of the deposition patterns to constrain approximate values of parameters in a numerical model of the deposition rate that incorporates the essence of the saltation process. Best fits to the data constrain a parameter that controls the probability distribution of liftoff speeds. In addition, the total vertical number flux of grains is constrained to roughly 107?108 grains m?2 s?1 at shear velocities of 0.33–0.40 m s?1. The lee side deposition pattern, which shows the expected maximum in deposition rate at a distance of several decimetres from the brink, is also well fit by the model. In addition, simultaneous collection of horizontal and lee deposition patterns, along with the numerical simulation of these patterns, strongly implies that the windfield in the lee of this particular dune is best described as a non-recirculating wake. Grainflows on the lee face are caused by failure of grainfall depositional bumps. Our results suggest that the principal effect of increased wind speed is to increase the frequency of grainflows. rather than to increase their size, implying that very large, thick grainflows require a different mechanism.  相似文献   

7.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

8.
Aeolian dune motion is thought to be driven by an annual cycle of sediment‐transporting wind events. Each wind event drives uneven motion of dune crestlines, yet dune crestlines align as a trend to an annual cycle of wind. Understanding the variability in dune motion over such a cycle aids the interpretation of aeolian cross‐stratification, often available only in the limiting exposure of core and outcrop. Digital elevation models obtained by light detection and ranging are used to estimate dune brink motion and sediment flux along the sinuous crestlines of crescentic dunes at White Sands gypsum dune field (south‐central New Mexico, USA) over an annual cycle of wind. In tandem, meteorological observations over the same annual cycle are used to drive a kinematic model of dune crestline motion. Wind‐driven kinematic modelling does well to predict the mean and overall variation in sediment flux with compass direction. Digital elevation model‐based estimations of brink motion and sediment flux reveal that dune motion and sediment flux very nearly follow a circular normal distribution. Dunes at White Sands were found to achieve steady mean values of lee surface dip direction, brink motion and sediment flux within a sample window the size of approximately six dunes of average crestline length. Due to the symmetrical distribution of dune motion about the average lee surface dip direction, uneven motion of dune crestlines averages to become motion of dune crestlines normal to a trend, as predicted by wind‐driven kinematic models.  相似文献   

9.
沙漠公路风沙土路基风蚀破坏试验研究   总被引:2,自引:0,他引:2  
李驰  高瑜 《岩土力学》2011,32(1):33-38
以沙漠公路风沙土路基为研究对象,通过室内风蚀风洞试验研究路基的风蚀破坏规律,以及路基不同断面对风沙流运动的影响。以路基高度、路基边坡坡率和路基宽度作为路基断面主要设计参数,研究不同路基断面下风沙流扰动、增速、减速、恢复的过程,以及路基周围风速流场的变化特征,分析路基病害较未病害时路基周围流场的变化。试验结果表明:路基高度和边坡坡率对风沙流运动的影响较大。随路基高度增加,路基对风沙流流场扰动增强,迎风坡坡顶处吹蚀破坏和背风坡坡底处堆蚀破坏越显著,在确定的路基边坡坡率下,路基模型高度为250 mm较模型高度为60 mm时,迎风坡坡顶风速增加1.13倍,背风坡坡底风速减小2.53倍,建议沙漠公路路基高度宜小于2.5 m。进一步,在确定的路基高度下,比较不同的边坡坡率对路基沿程风速的影响,发现当路基边坡坡率为1:1.75时,路基沿程风速变化不明显,沙漠公路风沙土路基不宜被风蚀破坏。  相似文献   

10.
Deserts are one of the most important dust sources in the world. Because dust content changes as a function of height at low levels in the atmosphere, this affects long‐term dust transport. In this paper, field data measured above shifting sands in the south‐eastern Tengger Desert were used to analyse the vertical distribution of sediment fluxes in the near‐surface layer (0 to 48 m). It was possible to express horizontal sediment flux as a power function, but aeolian deposition as a function of height could be expressed as an exponential function. There are two curve types for the particle size distributions in the horizontal sediment flux and aeolian deposition: bimodal and unimodal curves. For the horizontal sediment flux and aeolian deposition, heights of 24 m and 32 m, respectively, were the key heights in the size distribution curve; below these heights, the curve was bimodal, whereas above these heights, it was unimodal. At heights of 4 to 16 m, and especially between 8 m and 12 m, the data were particularly interesting because the sediment size, transport mode, degree of sorting, and the skewness and kurtosis change. For the horizontal sediment flux, wind turbulence moved saltating particles higher than expected.  相似文献   

11.
殷宝玲  刘琪  王叶堂 《冰川冻土》2021,43(5):1383-1399
基于19个人工气象站1961—2017年风速风向实测数据对南极冰盖近地面风速时空变化和风向进行了分析。结果表明:近50年来,南极冰盖近地面各季节平均风速和年平均风速变化的空间模式基本一致。东南极0°~120° E沿海地区风速呈显著上升趋势;南极半岛气象站风速变化趋势各异,且变化速率相差甚大,但从区域平均结果来看,南极半岛年和季节平均风速均呈上升趋势。这与近几十来局地气温、气压变化及南半球环状模趋向于正位相发展有关。东南极受下降风和绕极东风影响,大部分地区盛行偏南风或偏东风,且频率较高风向稳定;而受天气活动影响,南极半岛风向复杂,主风向频率低,风向多变。  相似文献   

12.
Aeolian sand transport results from interactions between the ground surface and airflow. Previous research has focused on the effects on sand entrainment and mass transport of surface features and wind velocity, but the influence of air density, which strongly constrains airflow characteristics and the resulting sand flow, has not been widely considered. In the present study, entrainment, saltation characteristics and transport rates were examined at nine experimental sites ranging in elevation from ?154 m below sea‐level (Aiding Lake) to 5076 m above sea‐level (Tanggula Mountain pass on the Qinghai–Tibetan plateau). At each site, a portable wind tunnel and high‐speed camera system were set up, and the friction wind velocity, threshold friction velocity and sand flow structure were observed systematically. For a given volumetric airflow, lower air density increases the wind velocity. Low air density also creates a high threshold friction velocity. The Bagnold wind erosion threshold model remains valid, but the value of empirical parameter A decreased with decreasing air density and ranged from 0·10 to 0·07, the smallest values reported in the literature. For a given wind velocity, increased altitude reduced total sand transport and creeping, but the saltation rate and saltation height increased. The present results provide insights into the fundamental mechanisms of the initiation and transport of sand by wind in regions with an extreme temperature or altitude (for example, alpine deserts and low‐lying lake basins) or on other planets, including Mars. These results also provide theoretical support for improved sand‐control engineering measures. The data and empirical equations provided in this paper improve the ability to estimate threshold and transport conditions for wind‐blown sand.  相似文献   

13.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

14.
The threshold condition and mass flux of aeolian sediment transport are the essential quantities for wind erosion prediction, dust storm modeling and geomorphological evolution, as well as the sand control engineering design. As a consequence, they have long been the key issues of windblown sand physics. Early researches on aeolian sediment transport focus mainly on steady transport process. While recently, synchronous, high frequency measurements show that wind field in atmospheric boundary layer is always unsteady, showing up as intense fluctuation of wind speed, which thus results in the intense spatial-temporal variability of aeolian sand transport. It has been proven that unsteady sand/dust transport is closely related with boundary layer turbulence and affects significantly the determination of threshold condition and the prediction of aeolian transport rate. The researches of experiment, theory analysis and numerical simulation on unsteady sand/dust transport in recent two decades are reviewed. Finally, open questions and future developments are suggested.  相似文献   

15.
The azimuth of imbrication of minimum magnetic susceptibility axes in the youngest loess from Ukraine defines prevailing wind directions during aeolian sedimentation. It changes along the studied sections. These changes can be directly correlated with the fluctuations of the Fennoscandian Ice Sheet. The northern and northeastern winds noted in the loess succession separated by a period when southwestern to southeastern winds were predominant may be correlated with two main phases of ice‐sheet advance during the Last Glacial Maximum. The ice‐sheet advances towards the areas of loess deposition generated katabatic winds that influenced aeolian sedimentation in the periglacial zone. A period of relatively stable wind directions during a younger phase of the Last Glacial Maximum was interrupted by periods with more chaotic wind regime most probably caused by fluctuations of the Fennoscandian Ice Sheet during its retreat from the peri‐Baltic part of Europe. These intervals occur where initial soils developed. The distribution of anisotropy of magnetic susceptibility axes defined along the periglacial loess sections from central and eastern Europe can serve to constrain fluctuations of the Fennoscandian Ice Sheet.  相似文献   

16.
The pattern of grainfall deposition in the lee of aeolian dunes   总被引:1,自引:0,他引:1  
ABSTRACT
A simple model for the deposition pattern in the lee of aeolian dunes is presented that relies heavily upon a recently developed understanding of aeolian saltation. Grainfall deposition at any position on the lee face is the result of all saltation trajectories that leave any point on the surface of the dune upwind of the brink with sufficient initial velocity to travel the intervening distance. The deposition rate at any position on the lee slope is obtained by integrating over all combinations of initial position and required velocity, the velocity being weighted by its probability density.
The resulting calculated total deposition rate patterns show distinct maxima on the order of one to a few decimetres from the brink, beyond which deposition rates fall off roughly exponentially. An important length scale emerges that characterizes this decay with distance from the brink, the length increasing with wind velocity, and decreasing with grain diameter. It is shown that this length scale is on the order of one metre for typical grain size and wind conditions. That this is typically smaller than the length of the lee slope is what gives rise to the oversteepening and eventual avalanching of the lee sides of aeolian dunes. The position of a pivot point on the lee slope may be predicted, separating source regions from accumulation regions for grainflow avalanche deposits.
The calculated patterns provide not only a means for quantitative interpretation of active and fossil dune grainfall deposits, but they provide the initial geometry for grainflow avalanches. The initial failures should coincide with the steepest gradient in grainfall deposition, slightly downslope from the grainfall maximum.  相似文献   

17.
Over the past 100 years, the Isles Dernieres, a low lying barrier island chain along the coast of central Louisiana, Usa , has undergone more than 1 km of northward beach face retreat with the loss of 70% of its surface area. The erosion results from a long term relative sea level rise coupled with day to day wind and wave action that ultimately favours erosion over deposition. At a site in the central Isles Dernieres, 8 days of wind and beach profile measurements during the passage of one winter cold front documented aeolian erosion and deposition patterns under both onshore and offshore winds. For offshore winds, the theoretical erosion rate, based on wind shear velocity, closely matched the measured erosion rate; for onshore winds, the theoretical rate matched the measured rate only after being corrected by a factor that accounted for beach face morphology. In late February 1989, a strong cold front moved into coastal Louisiana. That cold front stalled over the Gulf of Mexico, resulting in 4 days of strong northerly winds at a study site on the Isles Dernieres. During those 4 days, the wind moved sand from the backshore to the upper beach face. When the cold front finally moved out of the area, the wind shifted to the south and decreased in strength. The onshore wind then restored some of the upper beach face sand to the backshore while increased wave activity moved the rest into the nearshore. The theoretical estimate of 1·28 m3 m?1 for the rate of sand transport by the northerly wind compares well with the measured backshore erosion rate of 1·26 m3 m?1, which was determined by comparing beach profiles from the start and end of the period of northerly winds. The theoretical estimate of 0·04 m3 m?1 for the rate of sand transport by the southerly wind, however, is notably less than the measured rate of 0·45 m3 m?1. The large discrepancy between the two rates can be explained by a difference in the shear velocity of the wind between the beach face, where the erosion occurred, and the backshore, where the wind stress was measured. Using an empirical relationship for the wind shear drag coefficient as a function of coastal environment, the theoretical estimate for the rate of sand transport by the southerly wind becomes 0·44 m3 m?1  相似文献   

18.
A series of experiments to determine the direct emission of dust-sized particles from Gobi surfaces by clean wind (wind without sand), and the potential for aeolian abrasion of Gobi surfaces and beds of gravel and mobile sand to produce fine (<100 μm) and dust-sized (<10 μm, PM10) particles under sand-laden winds were conducted. Parent material was obtained from Gobi areas of the Ala Shan Plateau, the region with high dust emissions in arid China. The fine particles produced by aeolian processes were collected using sand traps and sieved the captured materials to exclude particles >100 μm in diameter and then PM10 by sedimentation was acquired. The Gobi surface provided most of the emitted fine particles during the initial dust emission processes, but subsequently, release of the clay coatings of particles by abrasion becomes the dominant source of fine materials. Under sand-laden winds, PM10 production rates produced by aeolian abrasion of Gobi surfaces ranged between 0.002 and 0.244% of blown materials. After removal of sand, silt, or clay with low resistance to erosion from the Gobi surfaces by the wind, the PM10 production rates caused by aeolian abrasion were similar to those from gravel and sand beds. The results also indicated that after the dust-sized particles with low resistance to erosion were removed, the production of dust-sized particles was unrelated to wind velocity. Under aeolian processes, Gobi deserts in this region therefore play a major role in dust emissions from arid and semiarid China.  相似文献   

19.
Thresholds of aeolian sand transport: establishing suitable values   总被引:4,自引:0,他引:4  
This paper assesses the practical use and applicability of the time fraction equivalence method (TFEM; Stout & Zobeck, 1996) of calculating a wind speed threshold for sand grain entrainment in field situations. A modification of the original method is used and is applied to 1 Hz measurements of wind speed and sand transport on a beach surface. Calculated grain entrainment thresholds are tested in terms of the percentage of sand transport events that they explain. It was found that the calculated thresholds offered a poor representation of the occurrence of saltation activity, explaining only about 50% of the measured transport events. Results are discussed in terms of system response time, wind speed measurement height, undetected events and sampling period. A shear velocity threshold for grain entrainment was also calculated, but this also failed to explain a high proportion of the sand transport events. The best results (67–91% of transport events explained) were found by calculating a threshold based on time‐averaged (≈ 40 s) wind velocity measurements. The applicability of a single threshold to a natural grain population is discussed. A natural surface is likely to possess a range of thresholds varying over short time scales in response to parameters such as grain rearrangement and changes in moisture conditions. The results show that calculated thresholds based on 40 s time‐averaged data consistently explain a high proportion of the recorded sand transport events. This is because such a time‐averaged approach accounts for higher frequency variability inherent in the sand transport system.  相似文献   

20.
Abstract Reliable predictions of wind erosion depend on the accuracy of determining whether erosion occurs or not. Among the several factors that govern the initiation of soil movement by wind, surface moisture is one of the most significant. Some widely used models that predict the threshold shear velocity for particle detachment of wet soils by wind were critically reviewed and evaluated. Wind‐tunnel experiments were conducted on pre‐wetted dune sand with moisture contents ranging from 0·00 to 0·04 kg kg?1. Sand samples were exposed to different wind speeds for 2 min. Moisture content was determined gravimetrically before and after each experiment, and the saltation of sand particles was recorded electronically with a saltiphone. Shear velocities were deduced from the wind speed profiles. For each moisture content, the experiments were repeated at different shear velocities, with the threshold shear velocity being determined by least‐squares analysis of the relationships between particle number rates and shear velocity. Within the 2‐min test runs, temporal changes in particle number rates and moisture contents were detected. A steep increase in the threshold shear velocity with moisture content was observed. When comparing the models, large differences between the predicted results became apparent. At a moisture content of 0·007 kg kg?1, which is half the moisture content retained to the soil matrix at a water tension (or matric potential) of ?1·5 MPa, the increase in ‘wet’ threshold shear velocity predicted with the different models relative to the dry threshold shear velocity ranged from 117% to 171%. The highest care should therefore be taken when using current models to predict the threshold shear velocity of wet sediment. Nevertheless, the models of Chepil (1956; Proc. Soil Sci. Soc. Am., 20, 288–292) and Saleh & Fryrear (1995; Soil Sci., 160, 304–309) are the best alternatives available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号