首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Purulia carbonatite, ‘carbonatite’-‘alkali-pyroxenite’-‘apatite-magnetite rock’ association, is located at Beldih area of Purulia district, West Bengal and falls within the 100 km long Northern Shear Zone (NSZ). Published literature suggests that the Purulia carbonatite was formed by the process of liquid immiscibility from under-saturated silicate parent magma. However, no silica under-saturated rocks like ijolite, nepheline-syenite etc. is known from the area. The trace element geochemistry (Ba/La, Nb/Th, Nb/Pb and Y/Ce ratios in the present study) also does not support this view. Present study indicates that the Purulia carbonatite is enriched in ΣREE and incompatible elements but the carbonatite is also poorer in Nb, Th and Pb compared to the world average of calicocarbonatites. The lower value of Nb is characteristics of carbo(hydro)thermal carbonatite where carbonatite is associated with alkali-pyroxenite and suggests probable origin of the carbonatite as carbothermal residua evolved from an unknown parentage. However, the field, petrographic and geochemical data indicate the genesis of this carbonatite from a primary carbonatitic magma of mantle decent. The 87Sr/86Sr ratio of the carbonatite and apatite separated from the carbonatite (~0.703) implies primary magmatic derivation of the Purulia carbonatite. Close similarity of the apatite of the apatite-magnetite rock with the mantle apatite (of type Apatite B) indicates that they are also of primary magmatic origin. The present work portrays a unique example where primary magmatic carbonatite is associated with the alkali-pyroxenite.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987110000125   总被引:3,自引:0,他引:3  
<正>Carbonatites are commonly related to the accumulation of economically valuable substances such as REE.Cu,and P.The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years.Worldwide,the rocks characteristically display more geochemical enrichments in Ba,Sr and REE than sedimentary carbonate rocks.However,carbonatite's geochemical features are disputed because of secondary mineral effects.Rock-forming carbonates from carbonatites at Qinling.Panxi region,and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns.They are characterized by a Sr content more than 10 times higher than that of secondary carbonates.The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance,indicating that they are of igneous origin.Some carbonates in Chinese carbonatites show REE(especially HREE) contents and distribution patterns similar to those of the whole rocks.These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite.This indicates that most intrusive carbonatites may be carbonate cumulates.Maoniuping and Daluxiang in Panxi region are large REE deposits.Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite.The fiuorite in Maoniuping has Sr and Nd isotopes similar to carbonatite.The Daluxiang fiuorite shows Sr and REE compositions different from those in Maoniuping.The difference is reflected by both the carbonatites and rock-forming carbonates,indicating that REE mineralization is related to carbonatites.The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE.The carbonatite-derived fluid has interacted with wallrock to form REE ore veins.The amount of carbonatite dykes occurring near the Bayan Obo orebodies may support the same mineralization model,i.e.that fluids evolved from the carbonatite dykes reacted with H8 dolomite marble,and thus the different REE and isotope compositions of coarse- and fine-grained dolomite may be related to reaction processes.  相似文献   

3.
川西冕宁-德昌REE成矿带是中国最重要的REE成矿带之一,包括牦牛坪超大型REE矿床、大陆槽大型REE矿床:木落寨中型REE矿床和里庄小型REE矿床等。REE成矿作用与碳酸岩-碱性杂岩体有关,受印度-亚洲大陆碰撞带的一系列新生代走滑断裂系统控制。碳酸岩-碱性岩杂岩体主要侵位于元古代结晶基底岩石和古生代-中生代沉积盖层。碳酸岩主要为方解石碳酸岩,碱性正长岩以英碱正长岩为主,两者微量元素分布模式及Sr-Nd同位素组成特征相一致,表明两者为岩浆不混溶产物,因此两者的成岩时代应该基本相近。然而,前人研究成果表明,牦牛坪碳酸岩中钠铁闪石K-Ar年龄为31.7Ma,正长岩全岩K—Ar年龄为40.8Ma,两者相差10Ma。此外,研究表明,大陆槽、木落寨和里庄REE矿床碳酸岩-正长岩杂岩体成岩年龄与其相应的成矿年龄基本一致,而牦牛坪REE矿床两者相差甚远。本文利用碳酸岩中方解石进行了Sm—Nd等时线年龄测定,结合前人资料,重新厘定了牦牛坪REE矿床碳酸岩的成岩年龄和矿床的成矿年龄,分别为29.9Ma和26~27Ma,两者在误差范围内相一致。  相似文献   

4.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

5.
The present study introduces the carbonatite in the northern part of the Korean Peninsula for the first time.Recent exploration and development of the phosphorus-bearing carbonate rocks in the area have accumulated new geological data which gave us an opportunity to study origin of the carbonate rocks.We conducted geological survey,geochemical analyses of trace elements and rare earth elements,and carbon and oxygen isotope analyses for the carbonatites from Ssangryong,Pungnyon,Yongyu and Puhung districts of the northern part of the Korean Peninsula.This research confirms that the phosphorus-bearing carbonate rocks are carbonatite originating from the mantle.The studied carbonatites are distributed at the junctions of ring and linear structures or around their margins and contain a greater amount of REEs,Y,and Sr than carbonate rocks.The carbonatites in Yongyu and Puhung area show evidence that they were formed from mantle plume generated at the lower mantle and display similar fractionation characteristics to carbonatites in Barrado Itapirapua in Brazil and Kalkfeld and Ondurakorume in Namibia.REE patterns of the carbonatites are typical of carbonatites and the carbon and oxygen isotope analyses demonstrate that the carbonatites were originated from mantle.The carbonatites from the northern part of the Korean Peninsula have a great potential for sources of REE,Y,PGE(platinum group elements),copper,and gold.  相似文献   

6.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

7.
岩浆(型)碳酸岩研究进展   总被引:19,自引:0,他引:19  
主要从岩石学,矿物学,岩石分类,C,O,Sr同位素,碳酸岩与矿化的关系等各方面对(碱性)碳酸岩的研究进行了较为全面的总结,并结合近20年来实验岩石等,流体包裹体研究,CO2^- H2O-NaCl流体体系的性质的研究,对碳酸岩岩浆的来源及成因,岩浆-热液的演化进行了分析和探讨,碳酸岩形成至少经历了三个阶段,即岩浆阶段,岩浆期后阶段(气相碳酸岩/岩浆热液阶段),交代碳酸岩阶段,而作为与碳酸岩在空间和成因上有密切联系的基性,超基性岩,碱性岩杂岩体,则经历了碳酸岩成岩阶段以前的岩浆不混熔作用,结晶分异作用,岩浆结晶作用以及碳酸岩形成之后的围岩蚀变(霓长岩化)作用。  相似文献   

8.
Summary Two bimodal carbonatite complexes in Namibia of Cretaceous age are explored as to the presence and composition of a coexisting carbonatitic fluid. The Kalkfeld and Ondurakorume complexes contain both Ca- and Mg/Fe-carbonatites, composed of calcite alone or calcite with ferroan dolomite, fluorapatite and strontianite. The major element evolution in the bulk rocks from s?vites to beforsites is due to crystallization of calcite and fluorapatite. All carbonatites show a negative Y anomaly in normalised REE plots. Fractionation is accompanied by successively lower HREE contents between Tb and Yb, expressed by the ratios Nd/Ho and Ho/Lu. The evolution of this downward-facing hump goes along with decreasing Y contents in bulk rocks and minerals. All this requires an additional phase coexisting with the carbonate liquid during fractionation. Comparison between the bulk rocks and the expelled fluid shows that the latter had preferentially accumulated the HREE and Y. Further evidence for this process are hydrothermal, HREE, Y-rich fluorites in other carbonatite complexes which reflect the composition of the expelled fluid. The high strength of fluoride complexes suggests that fluoride complexing in the carbonatitic fluid is the process responsible for extracting HREE and Y from the carbonatite magma, leaving fractionated carbonatite rocks depleted in these elements. The geochemical evolution of carbonatite magmas along fractionation has therefore to be considered in a melt-mineral-fluid system. Correspondence: B. Bühn, Instituto de Geociências, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil  相似文献   

9.
舒小超  刘琰  李德良  贾玉衡 《岩石学报》2019,35(5):1372-1388
霓长岩化作用是指碳酸岩(或碱性岩)流体对围岩的交代蚀变,它是碳酸岩型稀土(REE)矿床常见的蚀变类型,其所形成的岩石即为霓长岩。对霓长岩的深入研究可以鉴别碳酸岩体的存在,厘定碳酸岩岩浆(或流体)的地球化学性质及源区特征,这对于找寻碳酸岩相关的矿产资源(尤其是REE)以及剖析矿床成因机制有着重要的地质意义。川西冕宁-德昌稀土矿带是中国最重要的轻稀土矿带之一,包括牦牛坪超大型、大陆槽大型、木落寨和里庄中小型REE矿床以及一系列矿点。REE矿化与碳酸岩-碱性岩杂岩体密切相关,受一系列新生代走滑断裂的控制。该矿带广泛发育霓长岩化蚀变带,尤以大陆槽及里庄矿床为显著。岩相学分析表明,大陆槽和里庄霓长岩中的矿物多呈他形粒状结构,主要由长石、黑云母、霓辉石以及少量副矿物组成;主微量元素分析表明,霓长岩的碱质(K_2O+Na_2O)、MgO、Fe_2O_3T含量较高,且富集REE、Sr、Ba等微量元素;电子探针分析表明,霓长岩中的霓辉石Fe OT含量较高,长石Na_2O及K_2O含量较高,Ca O含量极低。An-Ab-Or三角图解显示长石主要为透长石和钠长石,属碱性长石系列;黑云母的地球化学成分图解表明云母的成因类型为交代型且具有相对富镁、贫铁等特征,属镁质黑云母。霓长岩化作用的交代流体含有较高的CO_2组分,且富含碱质、Mg、Fe及REE、Sr、Ba等元素。对比霓长岩与原岩的主微量元素发现:相比于正长岩原岩,在主量元素中,霓长岩的Fe、Mg、Ca等元素含量增加,Si、Al等元素含量降低;微量元素中,霓长岩的REE及Sr、Ba等元素显著增加。这意味着交代流体含有的Fe_2O_3T、MgO、CaO等组分在霓长岩化过程中被带进了围岩,而SiO_2和Al_2O_3等从围岩中被逐出。大陆槽及里庄矿区发育的角砾岩指示了矿区曾经历过频繁的角砾岩化事件,这提高了霓长岩作用的强度,并且为矿脉的穿插及REE矿物的沉淀提供了空间。在霓长岩化过程中,流体-围岩的组分交换反复发生,这削弱了REE络合物的稳定性,伴随多期次的热液活动及构造事件,最终完成REE活化→迁移→沉淀的过程。  相似文献   

10.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

11.
《International Geology Review》2012,54(12):1541-1552
The Mt Vulture carbonatites are the only carbonatite occurrence in the southern Apennines. We present new trace element data for these rocks in order to evaluate the factors influencing rare earth element (REE) and other trace element fractionations and their REE grade. This study focuses on massive hyalo-alvikites from two lava flows and one dike, which have different relative abundances of silicate and carbonate (i.e. Si/Ca). These differences are also evident from CaO/(CaO + MgO + FeO(T) + MnO) and Sr/Ba ratios. The REE grade of the Mt Vulture carbonatites is very similar to that of the global average for calcio-carbonatites. R-mode factor analysis shows that most of the trace element variance reflects the relative roles of carbonate and silicate minerals in influencing trace element distributions. Silicates largely control heavy rare earth element (HREE), transition metal, Zr, and Th abundances, whereas carbonate minerals control light rare earth element (LREE), Ba, and Pb abundances. In addition, apatite influences LREE concentrations. Increasing silica contents are accompanied by decreases in (La/Yb)N and (La/Sm)N ratios and less marked LREE enrichment. In contrast, higher carbonate contents are associated with increases in (La/Yb)N and (La/Sm)N. The Si/Ca ratio has little influence on Eu anomalies and middle rare earth element (MREE) to HREE fractionations. Apatite has a negligible effect on inter-REE fractionations amongst the carbonatites.  相似文献   

12.
鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义   总被引:3,自引:2,他引:1  
邱检生  张晓琳  胡建  李真 《岩石学报》2009,25(11):2855-2865
以鲁西雪野和八陡碳酸岩中的磷灰石为对象,运用EMPA和LA-ICP-MS技术,分别测定了它们的主量与微量元素组成,并据此讨论了它们的成岩意义.研究结果表明,这些磷灰石富F(=1.07%~2.74%)贫Cl(<0.04%),种属为羟氟磷灰石或氟羟磷灰石.微量元素组成上富Sr、Th、U、Pb和轻稀土,是全岩中上述元素的主要载体之一.磷灰石的Sr、F含量与∑REE及LREE/HREE比值均表现出较明显的正相关性,其富Sr、贫Y和富轻稀土等特点与世界典型碳酸岩中的磷灰石相似,但它们具有更高的Sr/Y和Th/U比值,Sr、Ce、Th、Y含量接近地幔中由交代作用形成的磷灰石,说明其寄主碳酸岩岩浆源区应为遭受过流体交代作用的富集地幔.这些磷灰石的(La/Nd)_N比值>1,(La/Yb)_N比值多数在100以上,与世界其他地区典型碳酸岩中的磷灰石相比铕负异常相对更明显,表明其寄主碳酸岩浆经历一定程度的分异演化.雪野较八陡碳酸岩中磷灰石含更高的F、Sr和∑REE含量及(La/Yb)_N比值,说明其寄主岩浆的演化程度更高.  相似文献   

13.
Carbonatites are often of economic importance, which raises the problem of distinguishing carbonatites from limestones when either are metamorphosed to high-grade marbles. They can be of similar appearance, particularly those from the Proterozoic and Archaean of the Indian Subcontinent. This study also contributes to solving the problem of determining the frequency of alkaline and carbonatitic magmatism during the early history of the Earth.The mineral assemblage of apatite–magnetite–phlogopite–calcite is common to marbles of both carbonatite and limestone origin. If pyrochlore is present that identifies the rock as carbonatite; if anorthite, fassaite, scapolite or spinel then it was formerly a limestone. If these minerals are absent, then trace element analysis can supply the critical Sr and REE data, which are both normally high in carbonatitic rocks and low in former limestones. These distinguishing factors are applied to the metamorphic carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India, which has been variously interpreted as formerly a carbonatite and as a limestone. The evidence shows that the Borra rocks are meta-sedimentary.  相似文献   

14.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

15.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

16.
The magmatic heritage of carbonatites can be identified on the basis of a combination of geological criteria such as, their mode of occurrence, the nature of associated igneous rocks, the presence of minerals of igneous origin, fenitization, characteristic trace element contents and isotopic composition. Late Proterozoic Samalpatti carbonatites were studied in view of these criteria, and were found to contain metamorphic minerals that normally form under thermal metamorphic conditions and which have unusual chemical compositions. A combination of criteria points clearly to a magmatic origin for these carbonatites. Field relations indicate that the dominant modes of intrusion of carbonatite into the encompassing pyroxenites and syenites include small dykes, veins, or lenses. The igneous nature of these carbonatites has been described elsewhere and chemically they are classified as calico-carbonatites. Currently, very little is known about the metamorphic textures and mineralogy observed in the Samalpatti carbonatites. In this study, several metamorphic minerals are reported including diopside, grossularite, vesuvianite, K-feldspar and wollastonite, and a hornfelsic texture is described. These mineral phases and texture characterize thermal metamorphism under low pressure and high temperature (LP-HT) metamorphic conditions (650°_750°C) or metasomatism aided by hot-fluid advection. The metamorphic nature of minerals reported is also confirmed by electron microprobe study. The Samalpatti carbonatite samples show much lower values of characteristic trace elements (P, Sr, Ba, Zr, Nb, Th, Y and REEs) than average concentrations for magmatic carbonatite. Stable isotopic (d13C and d18O) compositions of Samalpatti carbonatites do not fall in the primary igneous carbonatite (PIC) domain. The petrological and chemical signatures of these carbonatites suggest metasomatism in conjunction with fluid advection. Such a metasomatic process may drastically change the chemistry of the rocks in addition to enrichment of heavier stable isotopes. During this metasomatic process, characteristic elements would be dissolved in the high d18O fluid, and together with Rayleigh fractionation would contribute to enhanced concentrations of 13C and 18O in Samalpatti carbonatites.  相似文献   

17.
The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.  相似文献   

18.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

19.
We present new geochemical data on alkali and nepheline syenites from various complexes of different age within the Ukrainian Shield. The results reveal a correlation between the content of trace elements in the syenites, their assignment to a particular rock complex, the chemistry of primary melts, and the degree of their differentiation. The data also suggest regional geochemical heterogeneity in the ultramafic-alkaline complexes of the Ukrainian Shield. The alkali and nepheline syenites in the ultramafic-alkaline massifs from the eastern and western parts of the region exhibit similar REE contents and Eu/Eu* ratios but are markedly different in Nb, Ta, Zr, and Hf content and are of the miaskitic type. These rocks have lower REE, Nb, and Zr and higher Sr and Ba compared with early foidolites. The rocks of the gabbro-syenite complexes define a distinct Fe-enrichment fractionation trend from early syenitic intrusions to more differentiated varieties; they are also characterized by lower Sr, Ba, and Eu/Eu* and significantly lower contents of some major elements, e.g., Ti, Mg, and P. The agpaitic index and concentrations of Zr, Nb, Y, and REE increase in the same direction. A similar geochemical feature is observed in the alkali syenites genetically associated with anorthositerapakivi-granite plutons, which show incompatible-element enrichment and strong depletion in Sr and Ba. The distinctive evolutionary trends of alkali and nepheline syenites from different rock complexes of the Ukrainian Shield can be explained by different mechanisms of their formation. The main petrogenetic mechanism controlling the distribution of trace elements in the rocks of ultramafic-alkaline complexes was the separation of parent melts of melanephelinite and melilitite types into immiscible phonolite and carbonatite liquids. The gabbro-syenite complexes and alkali syenites from anorthosite-rapakivi granite plutons evolved via crystallization differentiation, which involved extensive feldspar fractionation.  相似文献   

20.
The apatite-bearing carbonate rocks at Eppawala, Sri Lanka occur as massive, discontinuous bodies in a Precambrian, high-grade metamorphic terrain, which weather to form economically important phosphate deposits. The ore bodies at Eppawala contain =42% P 2O 5, and citric acid solubility of different components varies from 4 to 6%. The parent rocks are mainly made up of calcite, dolomite and apatite, with lesser amounts of ilmenite, magnetite, pyrite, forsterite, phlogopite, enstatite, magnesite, diopside, tremolite and spinel. Most of minerals show an euhedral habit, with a wide range of crystal sizes (from a few millimetres to several decimetres). The Eppawala rocks are characterised by low silica (=0.41%), high phosphorous (=10.58%) and high strontium content (2,960–6,819 ppm). Concentrations of light rare-earth elements in these rocks are comparably higher than those of marbles. The REE fractionation of these rocks is pronounced, and La/Yb ratios vary between 14 and 43. Both apatite and calcite show markedly elevated strontium levels (=0.6%). The d 13C PDB and d 18O SMOW values of the carbonates are in the range of –3.4 to –2.2 and 7.7 to 16.4‰ respectively. The euhedral habit, as well as the presence of major quantities of apatite and considerable amounts of iron-bearing minerals suggest that the ore host rock has genetic links to an igneous source rather than to an intensely metamorphosed limestone. The higher light REE contents of the rocks, compared to marbles, also argue against a metamorphic or sedimentary origin. The Sr/Mn and Ce/La ratios in the apatite are ~40 and ~2 respectively, suggesting that they were formed in a carbonatite magma. The markedly increased REE concentrations in the bulk chemistry of the rocks have been shown to be mainly controlled by the content of phosphate minerals. Compared to most carbonatites, the Eppawala rocks are generally depleted in selected trace elements, particularly Ba, Nb, Th, V, U and Zr. This depletion may be due to either a primary infertility of the parent magma with regard to such trace elements, or it is a result of fractional crystallisation during the rock formation. The stable isotope ratios do not plot within the defined "mantle carbonatite box", but still lie within the broader range of carbonatitic rocks. With these data at hand, it can be readily argued that the mode of occurrence, petrography and geochemistry of the Eppawala apatite-bearing carbonates provide conclusive evidence of their carbonatitic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号