首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Cosmic ray track densities in Apollo 17 soil samples are used to infer surface exposure times of soils from a trench at Van Serg Crater, from on and near a boulder at Camelot Crater, and from the position of the heat flow and neutron flux experiments (the ALSEP site). The topmost 2 cm of soil at Van Serg was exposed for 11 m.y., the top cm at Camelot for 36 m.y. A layering chronology and average deposition rate are proposed for the trench. For all soils the median track densities imply predispositional irradiation in the top 15 cm of the lunar surface for times that were long compared with the actual residence in the stratigraphic positions from which the soils were collected. Van Serg crater is inferred to have been formed approximately 24 m.y. ago.  相似文献   

2.
Urban soils, although crucial to defining urban vegetation types and strengthening the resilience of urban ecosystems, can be severely modified by human activities. Yet understanding of these modifications and their implications for soil properties is limited. This study examined the vertical and spatial variability of selected soil physicochemical properties (pH, SOM, OC, TN, and bulk density) in Kumasi, Ghana, using a stratified random sampling technique. Soil samples were collected at three depths (0–15, 15–30, and 30–60 cm) from 161 plots in eight green space types within two urban zones. Mean topsoil pH ranged between 5.0 in the natural forest and 6.5 in home gardens. Mean bulk density, nitrogen, and carbon concentrations differed among green space types and depths (p?<?0.0001). Soil nitrogen and carbon concentrations in the 0–15 cm depth were two times greater than those of the 30–60 cm depth. Soil pH and organic matter concentrations were higher in the core urban soils than in the peri-urban while the reverse was true for total soil N and bulk density. Canonical discriminant analysis showed considerable separation of green space types based on the soil physicochemical properties. Higher total nitrogen and C:N ratios separated natural forest and cemetery from the other UGS types, whereas higher pH and bulk densities separated plantations and home gardens from the rest of the UGS types. Furthermore, the subsoil layers were laden with undecomposed cloths, plastics, concrete, and metal parts which can obstruct root growth and water movement. Results generally demonstrate considerable variability in soil properties among urban green spaces and highlight the need for a better understanding of these patterns to ensure continued support for plant growth, green space sustenance and maintenance, and the ecosystem services derived from them.  相似文献   

3.
The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a ‘typical’ highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by ‘third events’ about 2.0 b.y. ago. A lunar evolution model is discussed.  相似文献   

4.
Preliminary geochemical mapping was carried out within urban areas in Tampere Central Region, Finland, to gain a better understanding of element concentrations in urban soil and to provide information on baselines in soil within urban centres for soil contamination assessment purposes. The soil samples were taken from central city parks, day-care centres and school yards, and residential areas. Various sampling depths have generally been used in urban geochemical surveys. The aim of this study was to compare the results from two commonly used sample types taken from the same sites in urban soil: single samples of minerogenic topsoil from the 0–25 cm layer and composite samples of minerogenic topsoil from a depth of 0–2 cm. The concentrations of most of the studied trace elements showed a significant correlation between samples from 0 to 2 and 0 to 25 cm, but element concentrations differed between the two studied sample depths. For most of the studied elements, the median concentrations were higher in the 0–25 cm samples, but anomalous concentrations were more often found in the 0–2 cm samples. Some elements had elevated concentrations when compared with the Finnish guideline values for soil contamination assessment. This study did not conclusively establish whether a sampling depth of 0–2 or 0–25 cm should be recommended for similar studies in the future. Selection of the sampling depth in geochemical studies greatly depends on the aim of the project. In order to determine the upper limits of geochemical baseline variation, the deeper sampling depth appears to be more feasible. However, for the preliminary health risk assessment of areas with sensitive land uses, e.g. children’s playgrounds, samples from 0–2 cm depth are considered informative. Such samples may also be used to indicate local sources of dusting creating site-specific hotspots of potentially harmful elements in urban topsoil.  相似文献   

5.
Drastically disturbed soils caused by opencast mining can result in the severe loss of soil structure and increase in soil compactness. To assess the effects of mining activities on reconstructed soils and to track the changes in reclaimed soil properties, the variability of soil properties (soil particle distribution, penetration resistance (PR), pH, and total dissolved salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-mine inner dump after dumping and before reclamation was analyzed using a geostatistics method, and the number of soil monitoring points after mined land reclamation was determined. Soil samples were equally collected at 78 sampling sites in the study area with an area of 0.44 km2. Soil particle distribution had moderate variability, except for silt content at the depth of 0–20 cm with a low variability and sand content at the depth of 20–40 cm with a high variability. The pH showed a low variability, and TDS had moderate variability at all depths. The variability of PR was high at the depth of 0–20 cm and moderate at the depth of 20–40 cm. There was no clear trend in the variance with increasing depth for the soil properties. Interpolation using kriging displayed a high heterogeneity of the reconstructed soil properties, and the spatial structure of the original landform was partially or completely destroyed. The root-mean-square error (RMSE) can be used to determine the number of sampling points for soil properties, and 40 is the ideal sampling number for the study site based on cross-validation.  相似文献   

6.
Analysis of nine composite soil samples, each made of three replicate core samples and their respective background samples collected from Okigwe, Nekede and Orji automobile mechanic villages were conducted. Metal concentrations (mg/kg) above the background levels in the top 100 cm soil profile ranges as follows: 748-70,606 (± 10114.3) for iron; 99-1090 +- 251.3 for lead; 186-600 ± 180 for manganese; 102–1001± 201.9 for copper; 8–23 ± 12.9 for cadmium; 4–27 ± 6.0 for chromium; and 3–10 ± 2.2 for nickel. The order of abundance is: iron > lead > manganese > copper> cadmium > chromium > nickel, with Okigwe > Nekede > Orji. Pollution indexes show that the metals have similar pollution trends in the three layers (L1–L3), with L1 (0–10 cm) > L2 (10–20 cm) > L3 (90–100 cm) in Okigwe, L3 >L1>L2 in Nekede, and L3 >L2 >L1 in Orji. In effect, the shaly Okigwe soil is more polluted in the top layer while the sandy Nekede and Orji are more polluted in the lower layers. Despite this order, metal bioavailability may be less in the Okigwe soil due to its high clay-silt content (47 %–64 %). Pollution factor for Okigwe is 0.8, Nekede is 0.7 and Orji is 0.5. Nekede is under severe to excessive pollution while Orji and Okigwe are under moderate to excessive pollution, with weathered depths 7.4m at Orji and Nekede and 4m at Okigwe as most implicated in the pollution process. Above provides the bases for introducing the innovative concepts of environmentally friendly mechanic village.  相似文献   

7.
Fragments of igneous rocks, glasses and minerals comprise 25 per cent of the studied sample of the Luna 20 soil. Basalt fragments in the Luna 20 soil are similar to basalts from the mare regions of the Moon—in that they are characterized by the presence of iron-rich olivines and pyroxenes. On the basis of the FeO contents of plagioclases, it appears possible to distinguish between the plagioclase of the mare and highland regions of the Moon. Other igneous rock fragments are anorthosite, gabbroic anorthosite and anorthositic gabbro. The most abundant rock type (75 per cent of the sample) is microbreceia. One third of the fragments of microbreccia have undergone thermal metamorphism resulting in the homogenization of phases and the development of poikioblastic and hornfelsic textures. Excluding the basalt fragments, the dominant minerals in the Luna 20 soil are anorthite (An93–98), magnesium-rich orthopyroxenes, intermediate clinopyroxenes and olivine (< Fa50). Chemically, the Luna 20 and Apollo 16 soil samples are similar, but the Luna 20 soil is slightly depleted in aluminum and calcium and enriched in iron and magnesium relative to the Apollo 16 soils. The slight difference in bulk chemistry of the two soils may be a result of the presence of a minor amount of mare material in the Luna 20 soil and its apparent absence in the Apollo 16 soils.  相似文献   

8.
季节冻土区黑土耕层土壤冻融循环期湿度与温度变化研究   总被引:3,自引:3,他引:0  
在黑龙江省水利科学研究院水利试验研究中心的综合实验观测场, 利用2011年11月-2012年4月一个冬季冻融循环期的实测黑土耕层剖面土壤湿度和温度数据, 对典型中-深季节冻土区黑土耕层土壤湿度与冻结融化期土壤温度变化进行研究. 根据阳坡的黑土耕层土壤浅层1 cm、 5 cm、 10 cm及15 cm四种不同深度, 对冻融循环过程中土壤湿度随冻结融化期土壤温度变化特征进行分析, 研究黑土耕层土壤冻融过程中不同深度土壤水分的变化情况, 了解降水和温度对不同深度土壤湿度变化的影响. 结果表明: 在北京时间08:00、 14:00及20:00, 阳坡15 cm、 10 cm、 5 cm及1 cm深度黑土耕层土壤湿度随冻结融化期土壤温度变化的线性相关可决系数分别为0.9298、 0.9216、 0.5989、 0.7281, 斜率平均标准偏差分别为0.017、 0.019、 0.095、 0.056, 截距平均标准偏差分别为0.17、 0.25、 1.31、 0.83. 阳坡10 cm及15 cm深度的黑土耕层土壤湿度随冻结融化期土壤温度变化呈十分显著的线性相关关系. 阳坡5 cm深度的黑土耕层土壤湿度在冻结融化期与土壤温度变化线性关系稍微显著. 在整个冻结融化期, 因受太阳辐射、 降水及蒸发的强烈影响, 阳坡浅层1 cm深度黑土耕层土壤湿度与土壤温度线性相关性不如10 cm及15 cm深度的关系显著, 但比5 cm深度的关系显著.  相似文献   

9.
The manned Apollo 11, 12, 14 and 15 and the automated Luna 16 lunar missions have provided us with lunar rock and regolith (soil) samples from a number of geologically distinct sites. The mare regions were sampled by Apollo 11, 12 and Luna 16, whereas Apollo 14 landed on a terrain with more relief, the Fra Mauro Formation which represents an ejecta blanket from the Imbrian Basin, and Apollo 15 touched down near the lunar highlands. The samples collected consist of a mixture, mainly of basalt, breccia and regolith (soil-particulate matter, generally < 1 cm in size). The basalts show considerable variation in texture, mineralogy and chemistry and probably represent fragments from various parts of relatively thin and extensive lava flows in the maria. The breccias represent regolith material which was indurated to varying degrees by impact events. The regolith is a product of the breakdown, again by impact, of coherent rock masses of basalt and breccia.  相似文献   

10.
Fines from a Luna 20 soil sample and from three Apollo 16 deep drill core samples have been analyzed for major-minor element abundances by a combined, semi-micro atomic absorption spectrophotometric and colorimetric method. Both the major element and large ion lithophile trace element abundances in these soils, the first from interior highland sites, are greatly influenced by the very high normative plagioclase content, being distinctly richer in Al and Ca, and poorer in K, P, Cr, Mn, Fe, and Ti, than most bulk soil samples from previous lunar missions. The relatively large compositional variations in the Apollo 16 core can be ascribed almost entirely to decreasing plagioclase with increasing depth. The chemical composition of the Luna 20 soil indicates less plagioclase and less KREEP than in the Apollo 16 soils. A lunar differentiation model is presented in which is made the suggestion that KREEP is the result of a second fusion event in a lunar crust consisting of early feldspathic cumulates and primary aluminous ‘liquid’.  相似文献   

11.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

12.
This study was carried out to determine the effects of different land-use types on the properties of an Alfisol on the Jos Plateau, Nigeria. Areas being used for nature conservation (forest), grazing and maize cultivation were chosen, and the three are contiguous within a nearly level, moderately well-drained site. Within each of the three land-use areas, a plot of 30 x 20 m was chosen. Each plot was divided into 6 grids of 100 m2 size. Within each of these grids, four sampling sites were chosen by throwing up a coin four times. The four surface soil (0–5 cm depth) samples taken at the points where the coin landed, were mixed to form the composite sample, out of which sizeable portion was taken. This means that six soil samples were taken for each land use area (forest, grass, and cultivated). Same procedure was repeated for each of the following soil depths 5–15, 15–30 and 30–50 cm. Laboratory soil analyses were carried out while analysis of variance was used to test the significance of mean difference. The results show that forest clearing for grazing and maize cultivation has lead to significant decreases in most soil fertility variables. Organic matter levels of the grassland and cultivated soils are just about 28% and 13%, respectively, of that of the forest soil in the 0–5 cm depth, while they are 36% and 19%, respectively, in the 5–15 cm depth. Exchangeable cations and effective cation exchange capacity are also significantly higher in the forest soils. The effects are attributable to soil organic matter decomposition and nutrient removal resulting from forest clearance, maize cultivation and grazing. Hence, for sustained agricultural productivity, the soils require adequate inorganic and organic fertilizer additions together with appropriate cultural practices such as agroforestry, crop rotation and mixed cropping involving legumes.  相似文献   

13.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

14.
A soil geochemistry orientation survey for U at Koongarra was designed to determine optimum conditions for future U exploration in the area. Soil samples were collected at various depths from auger holes drilled along two traverses over the Koongarra No. 1 orebody, along a single traverse over suspected mineralization at nearby Anomaly A, and at three background localities. Rock samples collected from surface outcrop, costeans, and drill core were used to investigate any elemental associations with the ore or primary dispersion which could then be traced in the overlying soils.The results showed that Cu and Pb are potentially suitable pathfinder elements, where U data are not definitive, while Co, Ni and Be also provide significant information. The optimum sample depth was 1.2 m. For a Koongarra-sized target the maximum sample spacing should be 30 m on lines 200 m apart, provided every anomalous sample is followed up with closer spaced sampling around it. Anomalies detected in alluvial soil deeper than 1.2 m were due to hydromorphic dispersion. Some of the general distribution patterns for individual elements may be related to soil-type variations.  相似文献   

15.
A multi-proxy study has been performed on a sediment core from the Curuai floodplain, Central Amazonia. The combination of elemental, isotopic and molecular analysis of a 110 cm core (a record of ca. the last 100 yr) allowed reconstruction of the hydrological conditions of organic matter (OM) deposition. Two units could be delineated. The first (UI) was composed of three sub-units: UIa (0–15 cm), composed of highly degraded organic particles originating from the surrounding soil and indicative of restricted transport; UIb (15–48 cm), during which the region was permanently flooded and the material stored came from soil runoff, mainly from alluvial forest; and UIc (48–88 cm) composed of material from Amazon River suspended sediment, itself originating from OM degradation in forest soil. In UII (88–111 cm), the OM originated mainly from the forest soil and other plant remains in the floodplain. The data reveal that, during the four distinct depositional periods, the sedimentary OM alternated between land derived soil and alluvial vegetation due to changes in hydrodynamics.  相似文献   

16.
岩溶地区不同利用方式土壤土力学特性垂直变化特征   总被引:2,自引:0,他引:2  
孙泉忠  郭菁  王钰  彭璨 《中国岩溶》2013,32(3):287-291
以黔中岩溶地区不同利用方式的土壤为研究对象,采用野外调查和室内试验相结合的方法,研究了土壤黏聚力c、内摩擦角φ及紧实度随不同土壤利用方式、不同土层深度的变化特征。结果表明:土壤黏聚力c总体随土层深度不断增大,在0-35 cm内受不同土壤利用方式的影响比较明显;土壤内摩擦角φ在0-50 cm土层内,呈“S”形变化,受母质影响显著,三种不同土壤利用方式总体变化趋势基本一致;林地、灌草地、坡耕地土壤在垂直剖面上都存在着上松下紧的状况,在0-20 cm内,坡耕地土壤紧实度均小于林地和灌草地,20 cm以下坡耕地和灌草地土壤紧实度基本一致,但均大于林地,三者均保持着不断增大的趋势。研究表明:植被生长对于改善土壤力学性能具有一定的影响。因而通过加强植被保护与管理和调整坡耕地利用方式是改善土壤力学性能,防治土壤侵蚀和控制石漠化的主要手段。   相似文献   

17.
Stuart Ross Taylor 《Earth》1973,9(2):101-123
Prior to the receipt of the lunar samples, it was the scientific consensus that tektites were melted and splashed material formed during large cometary or meteorite impact events. Whether the impact took place on the Earth or the Moon was the topic of a long-standing scientific debate, which raged with particular intensity during the decade previous to the lunar landings.Four definite and separate tektite-strewn fields are known: bediasites (North America, 34 m.y.); moldavites (Czechoslovakia, 14 m.y.); Ivory Coast (1.3 m.y.); and Southeast Asian and Australian fields (0.7 m.y.). A fifth possible occurrence, of high-Na australites, possibly 3–4 m.y. old, remains to be substantiated. The age of infall of the australites is not agreed upon. Radiometric and fission track dates agree with the magnetic stratigraphy for deep-sea core microtektite occurrences at about 0.7 m.y. Terrestrial stratigraphic evidence favours a recent (30,000 years) date.The chemistry of tektites appears to reflect that of the parent material, and losses during fusion appear to be restricted to elements and compounds more volatile than cesium. Terrestrial impact glasses provide small-scale analogues of tektite-forming events, and indicate that only the most volatile components are lost during fusion.The Apollo lunar missions provide critical evidence which refutes the hypothesis of lunar origin of tektites. Tektite chemistry is totally distinct from that observed in lunar maria basalts. These possess Cr contents which are two orders of magnitude higher than tektites, distinctive REE patterns with large Eu depletions, high Fe and low SiO2 contents, low K/U ratios and many other diagnostic features, none of which are observed in the chemistry of tektites. The lunar uplands compositions, as shown by Apollo 14, 15 and 16 samples and the μ-ray and XRF orbiter data, are high-Al, low-SiO2 compositions totally dissimilar to those of tektites. The composition of lunar rock 12013 shows typical lunar features and is distinct from that of tektites. The small amounts of lunar K-rich granitic material found in the soils have K/Mg and K/Na ratios 10–50 times those of tektites.The ages of the lunar maria (3.2–3.8 aeons) and uplands (> 4.0 aeons) are an order of magnitude older than the parent material of the Southeast Asian and Australian tektites, which yield Rb-Sr isochrons indicating ages of the order of 100–300 m.y. The lunar lead isotopic compositions are highly radiogenic whereas tektites have terrestrial Pb isotopic ratios. Lunar δ18 O values are low (< 7 per mil) compared with values of +9.6 to +11.5 per mil for tektites. In summary, a lunar impact origin for tektites is not compatible with the chemistry, age or isotopic composition of the lunar samples. A lunar volcanic origin, recently revived by O'Keefe (1970) encounters most of the same problems. Recent lunar volcanism (< 50 m.y.), if the source of tektites, should contribute tektite glass to the upper layers of the regolith. None has been found. The presence of meteoritic components in tektites, and the high pressure phase coesite, are more readily interpreted as evidence of impact.The element abundances and inter-element variations in tektites do not resemble those in terrestrial igneous rocks, but show a close similarity to terrestrial sandstones. The composition of the Southeast Asian tektites, australites and moldavites resembles that of micaceous sandstones or subgreywackes, the Ivory Coast tektite composition is similar to that of greywacke, and the bediasite chemistry is analogous to that of arkose.No suitable terrestrial impact site has been identified for the bediasites, Southeast Asian tektites and australites. It is suggested that a search for the source of these latter strewnfields be made using satellite photographs to look for wide shallow craters produced by super-Tunguska type events on areas of Mesozoic sandstones. The moldavites were possibly formed during the Ries Crater event but, if so, the precise source of the material remains to be identified. The Ivory Coast tektites are linked by chemistry, isotope and age evidence to the Bosumtwi Crater, Ghana. The overall evidence now supports the origin of tektites by cometary (or meteorite) impact on terrestrial sedimentary rocks.  相似文献   

18.
Analysis of the spatial variability of soil properties is important to explain the site-specific ecosystems. Spatial patterns of some soil properties such as soil texture, exchangeable sodium percentage (ESP), electrical conductivity (ECe), soil pH and cation exchange capacity (CEC) were analyzed in salt and sodic affected soils in the south of the Ardabil province, in the northwest of Iran, to identify their spatial distribution for performance of a site-specific management. Soil samples were collected from 0 to 30, 30 to 60, 60 to 90, 90 to 120 and 120 to 150 cm soil depths at sampling sites. Data were investigated both statistically and geostatistically on the basis of the semivariogram. The spatial distribution model and spatial dependence level varied in the study area. Among the considered parameters, maximum and minimum spatial variability were observed in EC and pH parameters, respectively. Soil properties showed moderate to strong spatial dependence, except for a few. ECe was strongly spatially dependent in the total soil depth and clay was strongly spatially dependent at the first depth. Sand and pH were moderately spatially dependent for three of the five depths. ESP was strongly spatially dependent and silt was moderate in the total soil depths, except at 90–120 cm depth. Furthermore, CEC had strong spatial dependence for three of the five depths. All geostatistical range values were >1,389 m in this study. It was concluded that the strong spatial dependency of soil properties would lead to extrinsic factors such as bedrock, agricultural pollution, drainage and ground water level.  相似文献   

19.
We present values of velocity of ground water percolation (Vg) over large depth intervals, varying from shallow to deeper depths in Indaram area of Godavari sub-basin. The velocities have been estimated using available measured geothermal data. Sub-surface temperatures were measured in seven boreholes. Terrestrial heat flow values are calculated using temperature data and measured values of thermal conductivity of core samples. The results show that Vg is ~3.4 ×10?7 cm /sec in the top layers (70–150 m) and decreases to ~0.04×10?7 cm/sec in the deeper levels around 350 m depth and becomes negligibly small thereafter, thereby, indicating that the overall permeability of the sub-surface layers, due to the occurrence of successions of permeable, semi-permeable layers gets reduced to more or less zero at depths around 350 m. The value of Thermal Peclet Number, which is the ratio of the heat transfer through convection to that through conduction, naturally becomes negligible around this depth in the area. The observed consistency of the magnitude of heat flow through various deep sections is a clear indicator that water percolation is practically reduced to zero at depths around 320–400 m and that conduction is the dominant mechanism of heat transfer below the inferred depth section, while the upper layers are dominated by recharge at various depths by near surface water from streams at Indaram.  相似文献   

20.
为研究土壤冻融过程中不同地下水位对土壤的补给规律,在室内进行了两组不同地下水边界条件下的土柱冻结试验: A组无地下水补给,土柱高度60cm;B组地下水维持在距土柱表层60cm深度处。土壤在冻结过程中水分及盐分均呈向上运移趋势,稳定浅地下水补给会加剧水分及盐分向上运移,造成上层土壤盐分的聚积,影响土壤剖面的热量平衡,引起剖面温度的重新分布,从而减缓冻结锋的推进速度。运用HYDRUS-1D冻融模块对不同地下水埋深(0.5m,1.0m,1.5m,2.0m,2.5m)情况下冻结过程中水分运移规律进行了模拟。模拟结果表明:累积补给量在埋深小于1.5 m时随埋深增加而有所增加,而当地下水埋深大于1.5 m时,累积补给量随着埋深增加而有所减小,甚至保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号