首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The first sandstone unit of the Esdolomada Member of the Roda Formation (hereafter referred to as ‘Esdolomada 1’) was formed by a laterally‐migrating, shelf tidal bar. This interpretation is based on detailed mapping of the bedding surfaces on the digital terrain model of the outcrop built from light detection and ranging data and outcrop photomosaics combined with vertical measured sections. The Esdolomada 1 sandbody migrated laterally (i.e. transverse to the tidal currents) towards the south‐west along slightly inclined (1.6° to 4.6°) master bedding surfaces. The locally dominant tidal current flowed to the north‐west. This current direction is indicated by the presence of stacked sets of high‐angle (average 21°) cross‐stratification formed by dunes that migrated in this direction, apparently in an approximately coast‐parallel direction. The tidal bar contains sets and cosets of medium‐grained cross‐stratified sandstone that stack to reach a thickness of about 5·5 m. Individual cross‐bed sets average about 50 cm thick (with a range of 10 to 70 cm) and have lengths of ca 130 to 250 m in a direction perpendicular to the palaeocurrent. Set thickness decreases in the direction of migration, towards the south‐west, and the degree of bioturbation increases, so that the cross‐bedded sandstones gradually change into highly bioturbated finer‐grained and thinner‐bedded sandstones lacking any cross‐stratification. The rate of thinning of individual dune sets as they are traced down any obliquely‐accreting master surface is some 40 cm per 100 m (0·004) for the older, thicker sandstones, whereas the younger, thinner beds thin at a rate of 15 cm over 100 m (0·0015). The tidal bar has a sharp base and top and is encased in finer‐grained bioturbated, marine sandstones. The Esdolomada bar crest was oriented north‐west to south‐east, parallel to the tidal palaeocurrents and to the nearby palaeoshoreline, but built by lateral accretion towards the south‐west. Lateral outbuilding generated a flat‐topped bar with a measured width of about 1700 m, and a preserved height of 5·5 m. The bar, disconnected from a genetically related south‐westward prograding delta some 2 km to the north‐east, developed during the transgressive phase of a sedimentary cycle. The tidal bar was most probably initiated as a delta‐attached bar at the toesets of the delta front and during transgression evolved into a detached tidal bar.  相似文献   

2.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

3.
Willis  Bhattacharya  Gabel  & White 《Sedimentology》1999,46(4):667-688
The Frewens sandstone is composed of two elongate tide-influenced sandstone bodies that are positioned directly above and slightly landward of a more wave-influenced lobate sandstone. The 20-km-long, 3-km-wide Frewens sandstone bodies coarsen upwards and fine away from their axes, have gradational bases and margins and have eroded tops abruptly overlain by marine shales. These sandstones are superbly exposed in large cliffs on the banks of the South Fork of the Powder River in central Wyoming, USA. The deposits change upwards from thinly interbedded sandstones and mudstones to metre-thick heterolithic cross-strata and, finally, to metres-thick sandstone-dominated cross-strata. There is abundant evidence for tidal modulation of depositional flows; however, palaeocurrents were strongly ebb-dominated and nearly parallel the trend of sandstone-body elongation. Detailed mapping of stratal geometry and facies across these exposures shows a complex internal architecture. Large-scale bedding units within sandstone bodies are defined by alternations in facies, bed thickness and the abundance of shales. Such bedsets are inclined (5°–15°) in walls oriented parallel to palaeoflow and gradually decrease in dip over hundreds of metres as they extend from the sandstone-dominated deposits higher in a sandstone body to muddier deposits lower in the body. Where viewed perpendicular to palaeoflow, bedsets are 100-metre-wide lenses that shingle off the sandstone-body axis towards its margins. The sandstone bodies are interpreted as sand ridge deposits formed on the shoreface of a tide-influenced river delta. Metres-thick cross-strata in the upper parts of sandstone bodies resemble deposits of bars (sandwaves) formed where tidal currents moved across shallows and the tops of tidal ridges. Heterolithic deposits lower in sandstone bodies record fluctuating currents caused by ebb and flood tides and varying river discharge. Erosion surfaces capping sandstone bodies record tidal ravinement. The tidal ridges were abandoned following transgression and covered with marine mud as waters deepened.  相似文献   

4.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

5.
Shelf ridges are sedimentary bodies formed on the continental shelf due to transgressive reworking (tidal or storm) of lowstand deposits. Common on modern shelves, they are under‐represented in the geological record due to a lack of recognition criteria and facies model. This article proposes a new facies and architectural model for shelf ridges, linked to their inception–evolution–abandonment cycle and the process regime of the basin. The model is mainly based on new outcrop data and interpretations from three sandstone bodies of the Almond Formation, an overall transgressive interval during the infill of the Campanian Western Interior Seaway. Building from the case study, and ancient and modern examples, six characteristics are proposed for the recognition of ancient shelf ridges. Shelf ridges: (i) are encased between thick marine mudstone intervals; (ii) have a basal unconformity that erodes into marine muds or into the remnants of a previous shoreline; (iii) have a non‐erosional upper boundary that transitions into marine muds; (iv) are characterized by clean and well‐sorted sandstones, often cross‐bedded; (v) contain fully marine ichnofauna; and (vi) present compound architectures with large accretion surfaces and lower order structures. Although shelf ridges have been described in previous studies as generated exclusively by either tidal or storm currents, it is clear, from modern examples and the case study, that these two processes can be recorded and preserved in a single shelf ridge. The stratigraphy of these sandstone bodies is therefore much more complex than previously recognized, bearing the signature of changing tidal and storm intensity through time. Because they are developed during transgressions, shelf ridges are commonly subject to strong changes in process regime as sea‐level changes can easily affect the oceanographic conditions and the morphology of the basin. For this reason, shelf ridges can provide the best record of shelf process variability during transgressions.  相似文献   

6.
Integrated ichnological and sedimentological analyses of core samples from the Upper Jurassic Ula Formation in the Norwegian Central Graben were undertaken to quantify the influence of storm waves on sedimentation. Two main facies associations (offshore and shoreface) that form a progradational coarsening upward succession are recognizable within the cores. The offshore deposits are characterized by massive to finely laminated mudstones and fine‐grained sandstones, within a moderately to highly bioturbated complex. The trace fossil assemblage is dominated by deposit‐feeding structures (for example, Planolites, Phycosiphon and Rosselia) and constitutes an expression of the proximal Zoophycos to distal Cruziana ichnofacies. The absence of grazing behaviours and dominance of deposit‐feeding ichnofossils is a reflection of the increased wave energies present (i.e. storm‐generated currents) within an offshore setting. The shoreface succession is represented by highly bioturbated fine‐grained to medium‐grained sandstones, with intervals of planar and trough cross‐bedding, thin pebble lags and bivalve‐rich shell layers. The ichnofossil assemblage, forming part of the Skolithos ichnofacies, is dominated by higher energy Ophiomorpha nodosa ichnofossils and lower energy Ophiomorpha irregulaire and Siphonichnus ichnofossils. The presence of sporadic wave‐generated sedimentary structures and variability in ichnofossil diversity and abundance attests to the influence of storm‐generated currents during deposition. As a whole, the Ula Formation strongly reflects the influence of storm deposits on sediment deposition; consequently, storm‐influenced shoreface most accurately describes these depositional environments.  相似文献   

7.
Abstract The Panther Tongue of the Star Point Formation in central Utah contains a variety of transgressive lag deposits that, when mapped regionally, show a sensitive dependence upon pre‐existing topography of the palaeoshoreline. The Panther Tongue consists of a coarsening‐upward sandstone wedge that prograded into the Western Interior Seaway during Late Cretaceous (Santonian) time. High‐resolution sequence stratigraphic analysis revealed that this member was deposited during the long‐distance (>50 km) regression and transgression of a delta into shallow‐marine environments, containing basal highstand, forced regression, lowstand and transgressive systems tracts. Based on grain size, clast composition, lateral extent and stratigraphic position, the coarse sandstones on top of the Panther Tongue were classified into four types: (1) simple; (2) dispersed; (3) oxidized; and (4) local lags. The simple lag is composed of dark grey coarse sandstone with oyster fragments and shark teeth. This lag is typically extensively bioturbated and massive. Laminated and cross‐bedded units are also common. This type of coarse sandstone is interpreted as a typical transgressive lag. The dispersed lag differs in that it contains abundant mud and commonly occurs as multiple beds in thick intervals of muddy sandstone. Mixing of bay/estuarine and shallow ‐ marine mud with simple lag sand may be responsible for deposition of this type of coarse sandstone. The oxidized lag is distinctive in its reddish colour with extensive bioturbation and is commonly overlain by a simple lag. The local lag is composed of thin‐bedded, dark grey, coarse sandstone, occurring locally between the mouth bar and distributary channel. The variation in types, grain size and bed thickness of the coarse‐grained lags was mainly controlled by antecedent topography as suggested by immediately underlying lithofacies. Relatively thick (≈30 cm) simple lags are present on top of mouth‐bar sandstones, whereas dispersed lags are common on top of the distributary channel sandstone and in bay/estuarine and shallow‐marine mudstones. Erosion of topographic highs (mouth bar) resulted in relatively thick accumulation of simple lags. In topographic low areas such as distributary channel, estuary, bay and shallow‐marine environments, fine‐grained muddy sands that were eroded from the nearby topographic highs were redeposited. Intermittent storm waves transported coarse sands both landward and seaward, forming a dispersed lag. The net effect was reworking of local topographic relief during overall transgression, forming an apparently planar transgressive surface of erosion.  相似文献   

8.
The Sierra Grande Formation (Silurian-Early Devonian) consists of quartz arenites associated with clast supported conglomerates, mudstones, shales and ironstones. Eight sedimentary facies are recognized: cross-stratified and massive sandstone, plane bedded sandstone, ripple laminated sandstone, interstratified sandstone and mudstone, laminated mudstone and shale, oolitic ironstone, massive conglomerate and sheet conglomerate lags. These facies are interpreted as shallow marine deposits, ranging from foreshore to inner platform environments. Facies associations, based on vertical relationships among lithofacies, suggest several depositional zones: (a) beach to upper shoreface, with abundant plane bedded and massive bioturbated sandstones; (b) upper shoreface to breaker zone, characterized by multistorey cross-stratified and massive sandstone bodies interpreted as subtidal longshore-flow induced sand bars; (c) subtidal, nearshore tidal sand bars, consisting of upward fining sandstone sequences; (d) lower shoreface zone, dominated by ripple laminated sandstone, associated with cross-stratified and horizontal laminated sandstone, formed by translatory and oscillatory flows; and (e) transitional nearshore-offshore and inner platform zones, with heterolithic and pelitic successions, and oolitic ironstone horizons. Tidal currents, fair weather waves and storm events interacted during the deposition of the Sierra Grande Formation. However, the relevant features of the siliciclastics suggest that fair weather and storm waves were the most important mechanisms in sediment accumulation. The Silurian-Lower Devonian platform was part of a continental interior sag located between southern South America and southern Africa. The Sierra Grande Formation was deposited during a second order sea level rise, in which a shallow epeiric sea flooded a deeply weathered low relief continent.  相似文献   

9.
D. Uli&#;ný 《Sedimentology》2001,48(3):599-628
Deposits of coarse‐grained, Gilbert‐type deltas showing varying degrees of reworking of foresets by basinal currents were identified in Middle Turonian to Early Coniacian sandstones of the Bohemian Cretaceous Basin. The progradation of the deltaic packages, earlier interpreted as large‐scale subaqueous dunes, shelf ridges or subaqueous fault‐scarp ‘accumulation terraces’, was controlled by high‐ and low‐frequency, relative sea‐level changes in a relatively slowly subsiding, intracontinental strike‐slip basin. End‐member types of the Bohemian Cretaceous coarse‐grained deltas are deep‐water deltas, characterized by thick (50–80 m) foreset packages with steep (10–30°) foresets, and shallow‐water deltas, which deposited thin (<15 m) packages with foresets typically between 4° and 10°. The differences in thickness and foreset slope angle were controlled predominantly by the accommodation available during progradation. The depositional regime of the deltas was governed by (i) the fluvial input of abundant sand bedload, with a minor proportion of gravel; (ii) gravity flows, most probably caused by liquefaction of the upper part of the unstable foreset slope; and (iii) migration of sandy bedforms on the foreset slopes. The bedform migration was driven by unidirectional currents of possible tidal origin. Individual foreset packages represent systems tracts, or parts of systems tracts, of depositional sequences. A variety of stacking patterns of high‐frequency sequences exists in the basin, caused by low‐frequency relative sea‐level changes as well as by local changes in sediment input. Because of generally low subsidence rates, fluvial or beach topset strata were not preserved in the cases studied. The absence of preserved fluvial facies, which has been one of the main arguments against the fluvio‐deltaic origin of the sandstone bodies, is explained by erosion of the topsets during transgression and their reworking into coarse‐grained lags of regional extent covering ravinement surfaces.  相似文献   

10.
The meander-belt deposit comprises a sandstone resting on an erosion surface and bounded above and below by massive varicoloured mudstones with rootlet traces. The sandstone unit is composed of six bodies separated from one another, horizontally, by erosion surfaces; together the bodies form a single multilateral sand body. Internally each body is composed of lateral accretion units inclined at up to 6° from the horizontal. Vertical sequences of facies show significant variations but the grain size generally fines upwards. The principal lithofacies within the sandstones are, in common ascending order, intraformational conglomerate, large-scale cross-bedded, horizontal bedded and small-scale cross-laminated sandstone, and alternate sandstones and mudstones. Current directions are normal to the true slope of accretion surfaces and show insignificant scatter within individual bodies but are very diverse overall. Five of the sand bodies are believed to represent individual point bars, and one body an abandoned channel. Together they comprise the meander belt. The river was subject to very variable discharges and carried high suspended loads. Analysis of vertical profiles indicates that grain size segregation along the length of the point bars caused differentiation of the bars into coarse-grained heads and sandy tails.  相似文献   

11.
Late Eocene time in the Bremer and western Eucla Basins of southern Western Australia was a period of terrigenous clastic and abundant, unusual, biosiliceous sponge sedimentation. The Pallinup Formation (revised) consists of five units; 1 and 2 are basal sandstones, 3 and 4 are variably spiculitic mudstones, whilst the uppermost unit is spiculite and spongolite, and formalised as the Fitzgerald Member (new). The Pallinup Formation, plus coeval spiculites in palaeovalleys and carbonates in the western Eucla Basin, accumulated during one large‐scale, transgressive‐regressive relative sea‐level cycle. Drowned, low‐gradient rivers supplied mud but little sand. Instead, sand was locally sourced via transgressive shoreface erosion of deeply weathered regolith. Regression terminated shoreface erosion, eliminated the sand source, and resulted in a river‐supplied, clay‐dominated shallow‐marine depositional system. The unit 2–3 sandstone‐mudstone transition, which would normally be interpreted as transgressive drowning, is in this case the result of regressive cessation of sand supply. The peak relative sea‐level (highstand) horizon thus lies within unit 2 sandstones, a facies that would usually be considered wholly transgressive, and no highstand systems tract was deposited. The maximum flooding and downlap surfaces are the same horizon and cap the transgressive systems tract. They formed coincidentally or subsequent to peak relative sea‐level, but prior to initiation of unit 3 mudstone deposition. Upper unit 2 plus unit 3 represent a condensed section systems tract, and unit 4 plus the Fitzgerald Member comprise a regressive systems tract.  相似文献   

12.
Five coarsening upward shallow marine sandstone sequences (2–10 m thick), are described from the late Precambrian of North Norway, where they occur in a laterally continuous and tectonically undeformed outcrop. The sequences consist of five facies with distinct assemblages of sedimentary structures and palaeocurrent patterns. Each facies is the product of alternate phases of sedimentation during relatively high- and low-energy periods. Facies 1 to 4 are interpreted as representing prograding, subtidal sand bars. Sand bar progradation occurred during the highest energy periods when unidirectional currents flowed to the northwest, depositing trough cross-bedded sandstones (facies 3 and 4) on the bar crests and flanks, and sheet sandstone beds (facies 1 and 2) in the offshore environments. Weaker northwesterly flowing currents continued during moderate energy fair weather periods. Low energy fair weather periods were dominated by wave processes, which formed largescale, low-angle, westerly inclined surfaces on the bar flanks (facies 4) and wave rippled sandstone beds (facies 2) and flat laminated siltstone layers (facies 1) in the offshore environments. One sand bar was dissected by channels and infilled by tabular cross-bedded sandstones (facies 5). Bipolar palaeocurrent evidence, with two modes separated into two laterally equivalent channel systems, suggests deposition by tidal currents in mutually evasive ebb and flood channels. The inferred processes of these sand bars are compared with those associated with modern storm-generated and tidal current generated linear sand ridges. Both are influenced by the interaction of relatively low and high energy conditions. The presence of the tidal channel facies, however, combined with the inferred strong bottom current regime, is more analogous to a tidal current hydraulic regime.  相似文献   

13.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

14.
鲁武马盆地古近系-新近系发育多套超深水、超大型、富含天然气藏的重力流沉积砂体。以始新统砂体为解剖对象,分析区内重力流砂岩储层特征及成因。结果表明砂体以巨厚层状产出于深海泥岩内部,并与周围泥岩截然接触,测井曲线表现出宏观均一性;岩心揭示此类巨厚砂体是由多期单砂体叠置而成,单砂体是由底部高密度颗粒流和顶部低密度浊流两部分组成,且经历过强底流改造。鲁武马河流三角洲强大物源供给决定了区内砂体分布面积和体积规模;深海滑塌、块体搬运等重力流沉积过程控制了沉积体粒序构造和内部结构;海底区域性强底流持续冲刷并携带走单砂体顶部细粒沉积物,残留了底部“干净”的中粗粒砂岩;多期沉积事件和频繁水道迁移决定了砂体纵、横向叠加展布,并最终形成了区内厚度巨大、岩性宏观均一且连通性极好的超大型深水重力流沉积砂岩储层。  相似文献   

15.
Stacked shallow marine cycles in the Lower Ordovician, Bell Island Group, of Bell Island, Newfoundland, show upward thickening and upward coarsening sequences which were deposited on a storm-affected shelf. In the Beach Formation each cycle has a facies sequence comprised, from base to top, of dark grey mudstones, light grey mudstones, tabular sandstones and mudstones, lenticular sandstones and mudstones, and thick bedded lenticular sandstones, reflecting a progressive increase of wave orbital velocities at the sediment surface. The mudstones and tabular sandstones reflect an environment in which the sea floor lay in the lower part of the wave orbital velocity field and in which tempestites were deposited as widespread sheets from weak combined flow currents. The lenticular sandstones in the succeeding facies are wave reworked sands, commonly lying in erosional hollows and having erosional tops and internal hummocky cross-stratification. Planar lamination is relatively uncommon and sole marks are mainly absent. In this facies oscillatory currents were dominant and accumulated sand in patches generally 10–30 m in diameter. The facies formed on the inner shelf where the oscillatory currents generated by storm waves had powerful erosional effects and also determined the depositional bedforms. Mud partings and second-order set boundaries within sandstone beds are believed to separate the products of individual storms so that many lenticular sandstone beds represent the amalgamation of several event beds. This interpretation has important implications for attempts to estimate event frequency by counting sandstone beds within a sequence and for estimates of sand budgets during storm events. The thick bedded lenticular facies appears to have been formed by erosion of the mud beds between the lenticular sands, leading to nearly complete amalgamation of several lenticular sand bodies except for residual mud partings. In the overlying Redmans Formation the process of amalgamation progressed even further so that nearly all the mud partings were removed, resulting in the formation of thick bedded tabular sandstones. Sequence stratigraphic analysis of the cyclical sequence suggests that the cycles were eustatically controlled. The rising limb of the sea level curve produced only the dark grey mudstone part of the cycle while the remainder of the cycle was deposited on the falling limb. There is a gradational but rapid facies transition from the tabular to the lenticular sandstone facies which is interpreted as occurring at the inflexion point on the falling limb. The thick bedded facies of the Beach Formation and the thick bedded tabular facies of the Redmans Formation represent periods of maximum sea level fall. The stacked cycles in the Beach Formation are interpreted as an aggradational, high frequency sequence or parasequence set bounded at the top by a sequence boundary and succeeded by the three aggradational parasequences of the Redmans Formation. The recognition of storm facies with sandstone beds of very different bed length has important implications for the reservoir modelling of such facies.  相似文献   

16.
《Sedimentology》2018,65(5):1731-1760
Many shoreface sandstone reservoirs host significant hydrocarbon volumes within distal intervals of interbedded sandstones and mudstones. Hydrocarbon production from these reservoir intervals depends on the abundance and proportion of sandstone beds that are connected by erosional scours, and on the lateral extent and continuity of interbedded mudstones. Cliff‐face exposures of the Campanian ‘G2’ parasequence, Grassy Member, Blackhawk Formation in the Book Cliffs of east‐central Utah, USA , allow detailed characterization of 128 erosional scours within such interbedded sandstones and mudstones in a volume of 148 m length, 94 m width and 15 m height. The erosional scours have depths of up to 1·1 m, apparent widths of up to 15·1 m and steep sides (up to 35°) that strike approximately perpendicular (N099 ± 36°) to the local north–south palaeoshoreline trend. The scours have limited lateral continuity along strike and down dip, and a relatively narrow range of apparent aspect ratio (apparent width/depth), implying that their three‐dimensional geometry is similar to non‐channelized pot casts. There is no systematic variation in scour dimensions, but ‘scour density’ is greater in amalgamated (conjoined) sandstone beds over 0·5 m thick, and increases upward within vertical successions of upward‐thickening conjoined sandstone beds. There is no apparent organization of the overall lateral distribution of scours, although localized clustering implies that some scours were re‐occupied during multiple erosional events. Scour occurrence is also associated with locally increased amplitude and laminaset thickness of hummocky cross‐stratification in sandstone beds. The geometry, distribution and infill character of the scours imply that they were formed by storm‐generated currents coincident with riverine sediment influx (‘storm floods’). The erosional scours increase the vertical and lateral connectivity of conjoined sandstone beds in the upper part of upward‐thickening sandstone bed successions, resulting in increased effective vertical and horizontal permeability of such intervals.  相似文献   

17.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

18.

Lithofacies in the mid‐Permian Nowra Sandstone indicate a middle/upper shoreface to foreshore environment of deposition under the influence of storm‐generated waves and north‐northeasterly directed longshore currents. Palaeogeographic reconstruction for the Nowra Sandstone portrays a sand‐dominated high energy shelf and offshore shoal forming a sequence thickening seaward away from the western shore of the Sydney Basin. The shoal‐crest at the outer edge of the shelf trends north‐northeast. It is characterized by fine‐ to medium‐grained sandstone with upper flow regime structures and a high proportion of conglomerate, whereas coarser sandstone with lower energy bedforms occurs along the seaward side of the shoal. In the deeper water to the east, the lower Nowra Sandstone becomes rapidly thinner as it passes seaward, via bioturbated storm redeposited sandstone beds, into the shelf deposits of the Wandrawandian Siltstone. This sequence accumulated during a regressive event and the base of the formation becomes progressively younger eastward. The sand may have been supplied by rivers along the western coast but the major source was south of the study area. The lower Nowra Sandstone is separated from the upper part of the formation by an extensive ravinement surface overlain by the Purnoo Conglomerate Member. In contrast to the lower unit, the upper Nowra Sandstone forms a westward thickening wedge that represents a backstepping nearshore sand facies that accumulated during a transgression. The upper Nowra Sandstone passes vertically and laterally eastward into the Berry Siltstone. Thus both boundaries of the Nowra Sandstone are diachronous, first younging eastward and then westward as a response to a regressive‐transgressive episode.  相似文献   

19.
Facies models for regressive, tide‐influenced deltaic systems are under‐represented in the literature compared with their fluvial‐dominated and wave‐dominated counterparts. Here, a facies model is presented of the mixed, tide‐influenced and wave‐influenced deltaic strata of the Sego Sandstone, which was deposited in the Western Interior Seaway of North America during the Late Cretaceous. Previous work on the Sego Sandstone has focused on the medial to distal parts of the outcrop belt where tides and waves interact. This study focuses on the proximal outcrop belt, in which fluvial and tidal processes interact. Five facies associations are recognized. Bioturbated mudstones (Facies Association 1) were deposited in an offshore environment and are gradationally overlain by hummocky cross‐stratified sandstones (Facies Association 2) deposited in a wave‐dominated lower shoreface environment. These facies associations are erosionally overlain by tide‐dominated cross‐bedded sandstones (Facies Association 4) interbedded with ripple cross‐laminated heterolithic sandstones (Facies Association 3) and channelized mudstones (Facies Association 5). Palaeocurrent directions derived from cross‐bedding indicate bidirectional currents which are flood‐dominated in the lower part of the studied interval and become increasingly ebb‐directed/fluvial‐directed upward. At the top of the succession, ebb‐dominated/fluvial‐dominated, high relief, narrow channel forms are present, which are interpreted as distributary channels. When distributary channels are abandoned they effectively become estuaries with landward sediment transport and fining trends. These estuaries have sandstones of Facies Association 4 at their mouth and fine landward through heterolithic sandstones of Facies Association 3 to channelized mudstones of Facies Association 5. Therefore, the complex distribution of relatively mud‐rich and sand‐rich deposits in the tide‐dominated part of the lower Sego Sandstone is attributed to the avulsion history of active fluvial distributaries, in response to a subtly expressed allogenic change in sediment supply and relative sea‐level controls and autocyclic delta lobe abandonment.  相似文献   

20.
Deep‐water sandstone beds of the Oligocene Fusaru Sandstone and Lower Dysodilic Shale, exposed in the Buz?u Valley area of the East Carpathian flysch belt, Romania, can be described in terms of the standard turbidite divisions. In addition, mud‐rich sand layers are common, both as parts of otherwise ‘normal’ sequences of turbidite divisions and as individual event beds. Eleven units, interpreted as the deposits of individual flows, were densely sampled, and 87 thin sections were point counted for grain size and mud content. S3/Ta divisions, which form the bulk of most sedimentation units, have low internal textural variability but show subtle vertical trends in grain size. Most commonly, coarse‐tail normal grading is associated with fine‐tail inverse grading. The mean grain size can show inverse grading, normal grading or a lack of grading, but sorting tends to improve upward in most beds. Fine‐tail inverse grading is interpreted as resulting from a decreasing effectiveness of trapping of fines during rapid deposition from a turbidity current as the initially high suspended‐load fallout rate declines. If this effect is strong enough, the mean grain size can show subtle inverse grading as well. Thus, thick inversely graded intervals in deep‐water sands lacking traction structures do not necessarily imply waxing flow velocities. If the suspended‐load fallout rate drops to zero after the deposition of the coarse grain‐size populations, the remaining finer grained flow bypasses and may rework the top of the S3 division, forming well‐sorted, coarser grained, current‐structured Tt units. Alternatively, the suspended‐load fallout rate may remain high enough to prevent segregation of fines, leading to the deposition of significant amounts of mud along with the sand. Mud content of the sandstones is bimodal: either 3–13% or more than 20%. Two types of mud‐rich sandstones were observed. Coarser grained mud‐rich sandstones occur towards the upper parts of S3/Ta divisions. These units were deposited as a result of enhanced trapping of mud particles in the rapidly deposited sediment. Finer grained mud‐rich units are interbedded with ripple‐laminated very fine‐grained sandy Tc divisions. During deposition of these units, mud floccules were hydraulically equivalent to the very fine sand‐ and silt‐sized sediment. The mud‐rich sandstones were probably deposited by flows that became transitional between turbidity currents and debris flows during their late‐stage evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号