首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal evolutions of the terrestrial planets   总被引:1,自引:0,他引:1  
The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe–FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (250 km) lithosphere with a possible asthenosphere below. The core is molten.Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe–Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

2.
An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth–Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle.According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A “Magma Ocean” of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation.Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga.A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the terrestrial planets, including Mars and possibly early Earth.The Moon holds a historic record of Galactic cosmic-ray intensity, solar wind composition and fluxes and composition of solids of any size in the region of the terrestrial planets. Some of this record has been deciphered. Secular mixing of the Sun was constrained by determining 3He/4He of solar wind helium stored in lunar fines and ancient breccias. For checking the presumed constancy of the impact rate over the past ≈3.1 Ga, samples of the youngest mare basalts would be needed for determining their radiometric ages.Radiometric dating and stratigraphy has revealed that many of the large basins on the near side of the Moon were created by impacts about 4.1 to 3.8 Ga ago. The apparent clustering of ages called “Late Heavy Bombardment (LHB)” is thought to result from migration of planets several 100 million years after their accretion.The bombardment, unexpectedly late in solar system history, must have had a devastating effect on the atmosphere, hydrosphere and habitability on Earth during and following this epoch, but direct traces of this bombardment have been eradicated on our planet by plate tectonics. Indirect evidence about the course of bombardment during this epoch on Earth must therefore come from the lunar record, especially from additional data on the terminal phase of the LHB. For this purpose, documented samples are required for measuring precise radiometric ages of the Orientale Basin and the Nectaris and/or Fecunditatis Basins in order to compare these ages with the time of the earliest traces of life on Earth.A crater count chronology is presently being built up for planet Mars and its surface features. The chronology is based on the established lunar chronology whereby differences between the impact rates for Moon and Mars are derived from local fluxes and impact energies of projectiles. Direct calibration of the Martian chronology will have to come from radiometric ages and cosmic-ray exposure ages measured in samples returned from the planet.  相似文献   

3.
Farouk El-Baz 《Icarus》1975,25(4):495-537
The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respectively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geochemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides.Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impacting bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.Profiles of the outer lunar skin were constructed from the mapping camera system, including the laser altimeter, and the radar sounder data. Materials of the crust, according to the lunar seismic data, extend to the depth of about 65 km on the near side, probably more on the far side. The mantle which underlies the crust probably extends to about 1100 km depth. It is also probable that a molten or partially molten zone or core underlies the mantle, where interactions between both may cause the deep-seated moonquakes.The three basic theories of lunar origin—capture, fission, and binary accretion—are still competing for first place. The last seems to be the most popular of the three at this time; it requires the least number of assumptions in placing the Moon in Earth orbit, and simply accounts for the chemical differences between the two bodies. Although the question of origin has not yet been resolved, we are beginning to see the value of interdisciplinary synthesis of Apollo scientific returns. During the next few years we should begin to reap the fruits of attempts at this synthesis. Then, we may be fortunate enough to take another look at the Moon from the proposed Lunar Polar Orbit (LPO) mission in about 1979.  相似文献   

4.
The circular maria - Orientale, Imbrium, Serenitatis, Crisium, Smythii, and Tsiolkovsky -lie nearly on a lunar great circle. This pattern can be considered the result of a very close, non-capture encounter between Moon and Earth early in solar-system history. Of critical importance in analyzing the effects of such an encounter is the position of the weightlessness limit of the Earth-Moon System which is located at about 1.63R e, measured from the center of Earth to center of Moon. Within this weightlessness limit, material can be pulled from the lunar surface and interior by Earth's gravity and either escape from the Moon or be redistributed onto the lunar surface. In the case of an encounter with a non-spinning Moon, backfalling materials would be distributed along a lunar great circle. However, if the Moon is rotating during the encounter, the backfall pattern will deviate from the great circle, the amount depending on the rate and direction of spin. Such a close encounter model may be related to the pattern of circular maria if materials departing from the source region are visualized as spheroids of molten lunar upper mantle basalt. These spheroids, then, would impact onto the lunar surface to form a pattern of lava lakes. Radiometric dates from mare rocks are consistent with this model of mare formation if the older mare rock dates are considered to date the encounter and younger dates are considered to date subsequent volcanic eruptions on a structurally weakened Moon.  相似文献   

5.
Evaluation of all reasonable sources of stress in the lunar crust indicates that compressional thermoelastic stresses are the only ones which have been tectonically significant on the global scale during the last 3.5×109 yr of lunar history — i.e., the post-Imbrian. However, the thermoelastic stresses calculated for lunar models which have accretional heating profiles at the beginning of lunar history; i.e., a molten zone only a few hundred kilometers deep and a cool deep interior, are less than 1 kbar in the crust. Such stresses are lower than the more than 1 to 7 kbar needed to initiate thrust faulting in the outer crust according to Anderson's theory of thrust faulting. Thus such accretional models predict that no significant global thrust faulting has occurred during the post-Imbrian and that the crust should currently be seismically quiet on the global scale.In contrast, the compressional thermoelastic stresses generated in a Moon which was initially totally molten, as is the case if the Moon formed by fission, are up to 3.5 kbar in the outer few km of the crust at present. These stresses are well within the range needed to cause thrust faulting in the outer 4 km of the crust. According to this model there should be modest scale (10 km), young ( 0.5 to 1×109 yr old) thrust fault scarps in the highlands.Photoselenological investigations confirm that scarps with the expected age and geometric characteristics are found in the highlands. Thus the currently available photoselenological data support the stress model derived for an initially totally molten Moon, but not one which was molten only in the outer few hundreds of km.  相似文献   

6.
Of the many proposed modes of origin of the Moon, some violate physical laws; many are in conflict with observations; all are improbable. Perhaps the least improbable - based on recent tidal theory calculations and on the interpretation of lunar rock data - is capture of the Moon as it passed near the Earth in adirect (prograde) orbit, shortly after the formation of Moon and Earth, about 4.5 billion years ago. (Capture of the Moon from an initiallyretrograde orbit which had been proposed some years ago, leads to physically unacceptable consequences.) The effects of capture on the Earth would have been cataclysmic, leading to intensive heating of its interior, to volcanism, and to the immediate formation of an atmosphere and hydrosphere. Thus capture of a Moon may have given rise to the unique properties of the Earth (in the Solar System) and to the early evolution of life, about 3.5 billion years ago.Presented at the NATO Advanced Study Institute on Lunar Studies in Patras, Greece, September, 1971.  相似文献   

7.
The interpretation of planetary anomalies in the gravity fields of Mars and the Moon in relationship to their inhomogeneous internal structure is considered. The Martian and lunar gravity field models up to order and degree 20, three-layer (crust, mantle, core) model parameters, and planetary parameters have been used as input data. Models of the three-dimensional density distribution have been constructed for Mars and the Moon. The maps of horizontal density inhomogeneities at depths of 50, 100, and 1700 km for Mars and 60, 100, and 1400 km for the Moon are interpreted.  相似文献   

8.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

9.
Abstract— The crystallization ages of martian (SNC) meteorites give evidence that martian volcanism has continued until recent times‐perhaps until the present. These meteorites also indicate that the mantle source regions of this volcanism are modestly to extremely depleted by terrestrial standards. These 2 observations produce a conundrum. How is it that such depleted source regions have produced basaltic magma for such a long time? This contribution attempts to quantify the radiogenic heat production in 2 distinct martian mantle source regions: those of the shergottites and nakhlites. Compared to the depleted upper mantle of the Earth (MORB), the nakhlite source region is depleted by about a factor of 2, and the shergottite source region is depleted by a factor of 6. According to current geophysical models, the nakhlite source contains the minimum amount of radioactive heat production to sustain whole‐mantle convection and basalt generation over geologic time. A corollary of this conclusion is that the shergottite source contains much too little radioactivity to produce recent (<200 Ma) basalts. A model martian interior with a deep nakhlite mantle that is insulated by a shallow shergottite mantle may allow basalt production from both source regions if the divide between the nakhlite‐shergottite mantles acts as a thermal boundary layer. Similarities between lunar and martian isotopic reservoirs indicate that the Moon and Mars may have experienced similar styles of differentiation.  相似文献   

10.
Fundamental scientific questions concerning the internal structure and dynamics of the Moon, and their implications on the Earth-Moon System, are driving the deployment of a new broadband seismological network on the surface of the Moon. Informations about lunar seismicity and seismic subsurface models from the Apollo missions are used as a priori information in this study to optimise the geometry of future lunar seismic networks in order to best resolve the seismic interior structure of the Moon. Deep moonquake events and simulated meteoroid impacts are the assumed seismic sources. Synthetic P and S wave arrivals computed in a radial seismic model of the Moon are the assumed seismic data. The linearised estimates of resolution and covariance of radial seismic velocity perturbations can be computed for a particular seismic network geometry. The non-linear inverse problem relating the seismic station positions to the linearised estimates of covariance and resolution of radial seismic velocity perturbations is written and solved by the Neighbourhood Algorithm. This optimisation study favours near side seismic station positions at southern latitudes in order to constrain the deep mantle structure from deep moonquake data at large epicentral distances. The addition of a far side station allows to divide by two the size of the error bar on the seismic velocity model. The monitoring of lunar impact flashes from the Earth allows to improve the radial seismic model in the top of the mantle by adding much more meteor impact data at short epicentral distances due to the high accuracy of the space/time location of these seismic sources. Such meteor impact detections may be necessary to investigate the 3D structure of the lunar crust.  相似文献   

11.
The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.  相似文献   

12.
Recent geochemical and geophysical data suggest that the initial temperature of the Moon was strongly peaked toward the lunar surface. To explain such an initial temperature distribution, a simple model of accretion process of the Moon is presented. The model assumes that the Moon was formed from the accumulation of the solid particles or gases in the isolated, closed cloud. Two equations are derived to calculate the accretion rate and surface temperature of the accreting Moon. Numerical calculations are made for a wide range of the parameters particle concentration and particle velocity in the cloud. A limited set of the parameters gives the initial temperature profiles as required by geochemical and geophysical data. These models of the proto-moon cloud indicate that the lunar outershell, about 400 km thick, was partially or completely molten just after the accretion of the Moon and that the Moon should have been formed in a period shorter than 1000 yr. If the Moon formed at a position nearer to the Earth than its present one, the Moon might have been formed in a period of less than one year.On leave from Geophysical Institute, University of Tokyo.Contribution No. 2104, Division of Geological and Planetary Sciences, California Institute of Technology.  相似文献   

13.
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768.  相似文献   

14.
The origin and evolution of the Earth-Moon system is studied by comparing it to the satellite systems of other planets. The normal structure of a system of secondary bodies orbiting around a central body depends essentially on the mass of the central body. The Earth with a mass intermediate between Uranus and Mars should have a normal satellite system that consists of about half a dozen satellites each with a mass of a fraction of a percent of the lunar mass. Hence, the Moon is not likely to have been generated in the environment of the Earth by a normal accretion process as is claimed by some authors.Capture of satellites is quite a common process as shown by the fact that there are six satellites in the solar system which, because they are retrograde, must have been captured. There is little doubt that the Moon is also a captured satellite, but its capture orbit and tidal evolution are still incompletely understood.The Earth and the Moon are likely to have been formed from planetesimals accreting in particle swarms in Kepler orbits (jet streams). This process leads to the formation of a cool lunar interior with an outer layer accreted at increasingly higher temperatures. The primeval Earth should similarly have formed with a cool inner core surrounded in this case by a very strongly heated outer core and with a mantle accreted slowly and with a low average temperature but with intense transient heating at each individual impact site.  相似文献   

15.
Jennifer Meyer  Jack Wisdom 《Icarus》2011,211(1):921-924
Goldreich (Goldreich, P. [1967]. J. Geophys. Res. 72, 3135) showed that a lunar core of low viscosity would not precess with the mantle. We show that this is also the case for much of lunar history. But when the Moon was close to the Earth, the Moon’s core was forced to follow closely the precessing mantle, in that the rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar core did not follow the mantle during the Cassini transition. Dwyer and Stevenson (Dwyer, C.A., Stevenson, D.J. [2005]. An Early Nutation-Driven Lunar Dynamo. AGU Fall Meeting Abstracts GP42A-06) suggested that the lunar dynamo needs mechanical stirring to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was closer to the Earth than 26.0-29.0 Earth radii. A lunar dynamo powered by mechanical stirring might have been strongest near the Cassini transition.  相似文献   

16.
Fission from the Earth's mantle explains why the density of the Moon is similar to that of the Earth's mantle.If following the fission origin of the Moon, the Earth-Moon distance increases progressively, the Moon can recollect chemicals evaporated by the Earth but not volatile enough to be lost as gases.In this way, the surface of the Moon can be enriched in refractory elements as most of the authors have proposed.At 3 Earth radii the long geosynchronous phase allows the formation of a solid crust which will record the Earth's magnetic field and the equilibrium hydrostatic from at that distance.When geosynchronism is broken the Moon will recede; its shape will no longer fit the hydrostatic form. The crust will either break or will exercise pressure on the lower layers. Meteor craters will allow lava to come to the surface. Such flows will be very large where the shape of the crust does not fit at all the geosynchronous form. Large lava flows will appear this way on the near side where the shape has changed the most. The new lava flows no longer record the magnetic field of the Earth because with the end of the synchronous position the field is alternative for the Moon; only the remanent field can influence the new lava.Three out of five samples dated at 3.6 b.y. suggest nevertheless that the field decreased slowly without becoming alternative. This means that the geosynchronous phase may have lasted longer and put the Moon on a more distant orbit, as Alfvén and Arrhenius suggested.The interpretation of lunar magnetism as influenced by the Earth cannot discard any interpretation or suggestion of its own lunar magnetic process. It is quite possible that both mechanisms have worked as some samples show.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademic Nazionale del Lincei in Rome, Italy.  相似文献   

17.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

18.
Density models for the Moon, including the effects of temperature and pressure, can satisfy the mass and moment of inertia of the Moon and the presence of a low density crust indicated by the seismic refraction results only if the lunar mantle is chemically or mineralogically inhomogeneous. IfC/MR 2 exceeds 0.400, the inferred density of the upper mantle must be greater than that of the lower mantle at similar conditions by at least 0.1 g cm–3 for any of the temperature profiles proposed for the lunar interior. The average mantle density lies between 3.4 and 3.5 g cm–3, though the density of the upper mantle may be greater. The suggested density inversion is gravitationally unstable, but the implied deviatoric stresses in the mantle need be no larger than those associated with lunar gravity anomalies. UsingC/MR 3=0.400 and the recent seismic evidence suggesting a thin, high density zone beneath the crust and a partially molten core, successful density models can be found for a range of temperature profiles. Temperature distributions as cool as several inferred from the lunar electrical conductivity profile would be excluded. The density and probable seismic velocity for the bulk of the mantle are consistent with a pyroxenite composition and a 100 MgO/(MgO+FeO) molecular ratio of less than 80.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

19.
Some aspects and consequences of the theory of gravitational accretion of the terrestrial planets are examined. The concept of a “closed feeding zone” is somewhat unrealistic, but provides a lower bound on the accretion time. Safronov's relative velocity relation for planetesimals is not entirely consistent with the feeding zone model. A velocity relation which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time.Mercury, Venus, and the Earth have accretion times on the order of 108yr. Mars requires well over 109yr to accrete by the same assumptions. Currently available data do not rule out a late formation of Mars, but the lunar cratering history makes it unlikely. If Mars is as old as the Earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars after this event would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments infrerred for the Moon and Mercury may have had this source.  相似文献   

20.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号