首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic properties of saturated porous rocks with aligned fractures   总被引:4,自引:0,他引:4  
Elastic properties of fluid saturated porous media with aligned fractures can be studied using the model of fractures as linear-slip interfaces in an isotropic porous background. Such a medium represents a particular case of a transversely isotropic (TI) porous medium, and as such can be analyzed with equations of anisotropic poroelasticity. This analysis allows the derivation of explicit analytical expressions for the low-frequency elastic constants and anisotropy parameters of the fractured porous medium saturated with a given fluid. The five elastic constants of the resultant TI medium are derived as a function of the properties of the dry (isotropic) background porous matrix, fracture properties (normal and shear excess compliances), and fluid bulk modulus. For the particular case of penny-shaped cracks, the expression for anisotropy parameter ε has the form similar to that of Thomsen [Geophys. Prospect. 43 (1995) 805]. However, contrary to the existing view, the compliance matrix of a fluid-saturated porous-fractured medium is not equivalent to the compliance matrix of any equivalent solid medium with a single set of parallel fractures. This unexpected result is caused by the wave-induced flow of fluids between pores and fractures.  相似文献   

2.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

3.
Ultrasonic (500 kHz) P‐ and S‐wave velocity and attenuation anisotropy were measured in the laboratory on synthetic, octagonal‐shaped, silica‐cemented sandstone samples with aligned penny‐shaped voids as a function of pore fluid viscosity. One control (blank) sample was manufactured without fractures, another sample with a known fracture density (measured from X‐ray CT images). Velocity and attenuation were measured in four directions relative to the bedding fabric (introduced during packing of successive layers of sand grains during sample construction) and the coincident penny‐shaped voids (fractures). Both samples were measured when saturated with air, water (viscosity 1 cP) and glycerin (100 cP) to reveal poro‐visco‐elastic effects on velocity and attenuation, and their anisotropy. The blank sample was used to estimate the background anisotropy of the host rock in the fractured sample; the bedding fabric was found to show transverse isotropy with shear wave splitting (SWS) of 1.45 ± 1.18% (i.e. for S‐wave propagation along the bedding planes). In the fractured rock, maximum velocity and minimum attenuation of P‐waves was seen at 90° to the fracture normal. After correction for the background anisotropy, the fractured sample velocity anisotropy was expressed in terms of Thomsen's weak anisotropy parameters ε, γ & δ. A theory of frequency‐dependent seismic anisotropy in porous, fractured, media was able to predict the observed effect of viscosity and bulk modulus on ε and δ in water‐ and glycerin‐saturated samples, and the higher ε and δ values in air‐saturated samples. Theoretical predictions of fluid independent γ are also in agreement with the laboratory observations. We also observed the predicted polarisation cross‐over in shear‐wave splitting for wave propagation at 45° to the fracture normal as fluid viscosity and bulk modulus increases.  相似文献   

4.
Understanding the effects of in situ fluid content and fracture parameters on seismic characteristics is important for the subsurface exploration and production of fractured porous rocks. The ratio of normal-to-shear fracture compliance is typically utilized as a fluid indicator to evaluate anisotropy and identify fluids filling the fractures, but it represents an underdetermined problem because this fluid indicator varies as a function of both fracture geometry and fluid content. On the bases of anisotropic Gassmann's equation and linear-slip model, we suggest an anisotropic poroelasticity model for fractured porous reservoirs. By combining a perturbed stiffness matrix and asymptotic ray theory, we then construct a direct relationship between the PP-wave reflection coefficients and characteristic parameters of fluids(P-and S-wave moduli) and fractures(fracture quasi-weaknesses), thereby decoupling the effects of fluid and fracture properties on seismic reflection characterization.By incorporating fracture quasi-weakness parameters, we propose a novel parameterization method for elastic impedance variation with offset and azimuth(EIVOA). By incorporating wide-azimuth observable seismic reflection data with regularization constraints, we utilize Bayesian seismic inversion to estimate the fluid content and fracture parameters of fractured porous rocks. Tests on synthetic and real data demonstrate that fluid and fracture properties can be reasonably estimated directly from azimuthal seismic data and the proposed approach provides a reliable method for fluid identification and fracture characterization in a gas-saturated fractured porous reservoir.  相似文献   

5.
非常规油气藏(如致密性地层及蕴藏油气的页岩地层)的重要特征是低孔、低渗,但裂隙或裂缝比较发育.为满足非常规勘探的需求,本文将孔、裂隙介质弹性波传播理论应用于多极子声波测井的井孔声场模拟,重点研究了致密介质中裂隙发育时多极子声波的传播机理以及衰减特征.井孔声场的数值计算结果表明裂隙的存在明显改变了弹性波和井孔模式波的频散、衰减和激发强度,尤其是井壁临界折射纵波的激发谱的峰值随着频率的增加逐渐降低,这与应用经典的Biot理论下的计算结果相反,且裂隙的存在也使得饱含水和饱含气时临界折射纵波激发强度的差异变大.井孔模式波的衰减与地层横波衰减和井壁流体交换有关,井壁开孔边界下致密地层裂隙发育还使得井孔斯通利波和艾里相附近的弯曲波对孔隙流体的敏感性增强,在井壁闭孔边界条件下引起井孔模式波衰减的主要因素是裂隙引起的地层横波衰减造成的,且在截止频率附近弯曲波的衰减与地层的横波衰减一致.数值计算结果为解释非常规油气地层的声学响应特征提供了参考.  相似文献   

6.
Seismic attenuation mechanisms receive increasing attention for the characterization of fractured formations because of their inherent sensitivity to the hydraulic and elastic properties of the probed media. Attenuation has been successfully inferred from seismic data in the past, but linking these estimates to intrinsic rock physical properties remains challenging. A reason for these difficulties in fluid-saturated fractured porous media is that several mechanisms can cause attenuation and may interfere with each other. These mechanisms notably comprise pressure diffusion phenomena and dynamic effects, such as scattering, as well as Biot's so-called intrinsic attenuation mechanism. Understanding the interplay between these mechanisms is therefore an essential step for estimating fracture properties from seismic measurements. In order to do this, we perform a comparative study involving wave propagation modelling in a transmission set-up based on Biot's low-frequency dynamic equations and numerical upscaling based on Biot's consolidation equations. The former captures all aforementioned attenuation mechanisms and their interference, whereas the latter only accounts for pressure diffusion phenomena. A comparison of the results from both methods therefore allows to distinguish between dynamic and pressure diffusion phenomena and to shed light on their interference. To this end, we consider a range of canonical models with randomly distributed vertical and/or horizontal fractures. We observe that scattering attenuation strongly interferes with pressure diffusion phenomena, since the latter affect the elastic contrasts between fractures and their embedding background. Our results also demonstrate that it is essential to account for amplitude reductions due to transmission losses to allow for an adequate estimation of the intrinsic attenuation of fractured media. The effects of Biot's intrinsic mechanism are rather small for the models considered in this study.  相似文献   

7.
本文综合考虑了在波传播过程中孔隙介质的三种重要力学机制——"Biot流动机制一squirt流动机制-固体骨架黏弹性机制",借鉴等效介质思想,将含水饱和度引入波动力学控制方程,并考虑了不同波频率下孔隙流体分布模式对其等效体积模量的影响,给出了能处理含粘滞性非饱和流体孔隙介质中波传播问题的黏弹性Biot/squirt(BISQ)模型。推导了时间-空间域的波动力学方程组,由一组平面谐波解假设,给出频率-波数域黏弹性BISQ模型的相速度和衰减系数表达式。基于数值算例分析了含水饱和度、渗透率与频率对纵波速度和衰减的影响,并结合致密砂岩和碳酸盐岩的实测数据,对非饱和情况下的储层纵波速度进行了外推,碳酸盐岩储层中纵波速度对含气饱和度的敏感性明显低于砂岩储层。  相似文献   

8.
Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave‐induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low‐ and high‐frequency limits. This allows us to quantify frequency‐dependent anisotropy due to the wave‐induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi‐P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny‐shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P‐wave and SV‐wave results in anisotropy due to the non‐vanishing excess tangential compliance.  相似文献   

9.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

10.
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.  相似文献   

11.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

12.
基于Biot理论,考虑液相的黏弹性变形和固液相接触面上的相对扭转,提出了含黏滞流体VTI孔隙介质模型.从理论上推导出,在该模型中除存在快P波、慢P波、SV波、SH波以外,还将存在两种新横波-慢SV波和慢SH波.数值模拟分析了6种弹性波的相速度、衰减、液固相振幅比随孔隙度、频率的变化规律以及快P波、快SV波的衰减随流体性质、渗透率、入射角的变化规律.结果表明慢SV波和慢SH波主要在液相中传播,高频高孔隙度时,速度较高;大角度入射时,快P波衰减表现出明显的各向异性,而快SV波的衰减则基本不变;储层纵向和横向渗透率存在差异时,快SV波衰减大的方向渗透率高.  相似文献   

13.
结合有限差分方法和等效介质理论,模拟了离散分布裂缝介质中地震波的传播. 基于等效介质理论,利用二维有限差分实现封闭裂缝的离散分布;裂缝可以处理成固体岩石中的高度柔性界面,并可以用线性滑动或者位移间断模型进行裂缝的物理描述. 对于含有多组裂隙的破裂固体,其有效柔度可以认为是固体骨架背景柔度和裂缝附加柔度之和. 在一阶近似条件下,固体骨架和裂缝参数可以通过有效各向异性系数联系起来,有效各向异性系数决定了各向异性(裂缝效应)对于地震波传播的影响. 通过与射线理论方法的对比检验,说明本文提出的模拟方法的有效性,并通过几个数值算例说明本方法可有效模拟不同的裂缝分布效应. 结果表明,即使在裂缝密度很小的情况下,具有相同裂缝密度的不同的空间分布可以产生不同的波场特征. 同时,也验证了不同裂缝尺度对波长的不同影响,以及裂缝尺度具有幂率分布(分形)时,尺度对波场的影响. 最后得出结论:在运用建立在等效介质理论基础上的地震各向异性概念来描述裂缝固体的特征时,要倍加小心,等效介质理论中尚未合理处理的裂缝尺度和空间分布对波的传播特征具有重要的影响.  相似文献   

14.
We study the propagation of elastic waves that are generated in a fluid‐filled borehole surrounded by a cracked transversely isotropic medium. In the model studied the anisotropy and borehole axes coincide. To obtain the effective elastic moduli of a cracked medium we have applied Hudson's theory that enables the determination of the overall properties as a function of the crack orientation in relation to the symmetry axis of the anisotropic medium. This theory takes into account the hydrodynamic mechanism of the elastic‐wave attenuation caused by fluid filtration from the cracks into a porous matrix. We have simulated the full waveforms generated by an impulse source of finite length placed on the borehole axis. The kinematic and dynamic parameters of the compressional, shear and Stoneley waves as functions of the matrix permeability, crack orientation and porosity were studied. The modelling results demonstrated the influence of the crack‐system parameters (orientation and porosity) on the velocities and amplitudes of all wave types. The horizontally orientated cracks result in maximal decrease of the elastic‐wave parameters (velocities and amplitudes). Based on the fact that the shear‐ and Stoneley‐wave velocities in a transversely isotropic medium are determined by different shear moduli, we demonstrate the feasibility of the acoustic log to identify formations with close to horizontal crack orientations.  相似文献   

15.
The detection and characterisation of domains of intersecting fractures are important goals in several disciplines of current interest, including exploration and production of unconventional reservoirs, nuclear waste storage, CO2 sequestration, and groundwater hydrology, among others. The objective of this study is to propose a theoretical framework for quantifying the effects of fracture intersections on the frequency‐dependent elastic properties of fluid‐saturated porous and fractured rocks. Three characteristic frequency regimes for fluid pressure communication are identified. In the low‐frequency limit, fractures are in full pressure communication with the embedding porous matrix and with other fractures. Conversely, in the high‐frequency limit, fractures are hydraulically isolated from the matrix and from other fractures. At intermediate frequencies, fractures are hydraulically isolated from the matrix porosity but can be in hydraulic communication with each other, depending on whether fracture sets are intersecting. For each frequency regime, the effective stiffness coefficients are derived using the linear‐slip theory and anisotropic Gassmann equations. Explicit mathematical expressions for the two characteristic frequencies that separate the three frequency regimes are also determined. Theoretical predictions are then applied to two synthetic 2D samples, each containing two orthogonal fracture sets: one with and another without intersections. The resulting stiffness coefficients, Thomsen‐style anisotropy parameters, and the transition frequencies show good agreement with corresponding numerical simulations. The theoretical results are applicable not only to 2D but also to 3D fracture systems and are amenable to being employed in inversion schemes designed to characterise fracture systems.  相似文献   

16.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   

17.
We present laboratory ultrasonic measurements of shear‐wave splitting from two synthetic silica cemented sandstones. The manufacturing process, which enabled silica cementation of quartz sand grains, was found to produce realistic sandstones of average porosity 29.7 ± 0.5% and average permeability 29.4 ± 11.3 mD. One sample was made with a regular distribution of aligned, penny‐shaped voids to simulate meso‐scale fractures in reservoir rocks, while the other was left blank. Ultrasonic shear waves were measured with a propagation direction of 90° to the coincident bedding plane and fracture normal. In the water saturated blank sample, shear‐wave splitting, the percentage velocity difference between the fast and slow shear waves, of <0.5% was measured due to the bedding planes (or layering) introduced during sample preparation. In the fractured sample, shear‐wave splitting (corrected for layering anisotropy) of 2.72 ± 0.58% for water, 2.80 ± 0.58% for air and 3.21 ± 0.58% for glycerin saturation at a net pressure of 40 MPa was measured. Analysis of X‐ray CT scan images was used to determine a fracture density of 0.0298 ± 0.077 in the fractured sample. This supports theoretical predictions that shear‐wave splitting (SWS) can be used as a good estimate for fracture density in porous rocks (i.e., SWS = 100εf, where εf is fracture density) regardless of pore fluid type, for wave propagation at 90° to the fracture normal.  相似文献   

18.
Attempts have previously been made to predict anisotropic permeability in fractured reservoirs from seismic Amplitude Versus Angle and Azimuth data on the basis of a consistent permeability‐stiffness model and the anisotropic Gassmann relations of Brown and Korringa. However, these attempts were not very successful, mainly because the effective stiffness tensor of a fractured porous medium under saturated (drained) conditions is much less sensitive to the aperture of the fractures than the corresponding permeability tensor. We here show that one can obtain information about the fracture aperture as well as the fracture density and orientation (which determines the effective permeability) from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data. Our workflow is based on a unified stiffness‐permeability model, which takes into account seismic attenuation by wave‐induced fluid flow. Synthetic seismic Amplitude Versus Angle and Azimuth data are generated by using a combination of a dynamic effective medium theory with Rüger's approximations for PP reflection coefficients in Horizontally Transversely Isotropic media. A Monte Carlo method is used to perform a Bayesian inversion of these synthetic seismic Amplitude Versus Angle and Azimuth data with respect to the parameters of the fractures. An effective permeability model is then used to construct the corresponding probability density functions for the different components of the effective permeability constants. The results suggest that an improved characterization of fractured reservoirs can indeed be obtained from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data, provided that a dynamic effective medium model is used in the inversion process and a priori information about the fracture length is available.  相似文献   

19.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

20.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号