首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents an elasto‐plastic model for unsaturated compacted soils and experimental results obtained from a series of suction‐controlled triaxial tests on unsaturated compacted clay with different initial densities. The initial density dependency of the compacted soil behaviour is modelled by establishing experimental relationships between the initial density and the corresponding yield stress and thereby between the initial density and the location and slope of normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure surface and the yield surface in the deviatoric plane are given by the extended SMP criterion. A considerable number of the isotropic compression, triaxial compression and extension tests on unsaturated compacted clay with different initial densities were performed using a suction‐controllable triaxial apparatus, to measure the stress–strain–volume change in different stress paths and wetting paths. The model has well‐predicting capabilities to reproduce the mechanical behaviour of specimens compacted under different conditions not only in isotropic compression but also in triaxial compression and triaxial extension. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
孙德安  陈振新 《岩土力学》2012,33(Z2):16-021
目前大多数非饱和土的弹塑性本构模型用非饱和击实土的试验结果进行验证,但现场其他类型的土,如沉积土经常有在非饱和状态下外部环境变化的情况。现有的非饱和土弹塑性模型是否适用于沉积土一类的现场土是需要研究的课题。进行非饱和上海第③层土的吸力控制排水排气三轴剪切试验,使用文中提出的能统一考虑非饱和土水力性状和力学性状的弹塑性本构模型,预测上述三轴试验结果,并与试验数据进行比较。比较结果显示,建立的本构模型能够很好地预测非饱和上海软土的水力和力学性质,说明该模型不仅可以适用击实土的预测,还能够很好地适用于其他类型非饱和土的水力和力学性质的模拟。  相似文献   

4.
Most existing hydromechanical models for unsaturated soils are not able to fully capture the nonlinearity of stress–strain curves at small strains (less than 1%). They cannot therefore, for example, accurately predict ground movements and the performance of many earth structures under working conditions. To tackle this problem, a state‐dependent bounding surface plasticity model has been newly developed. Particularly, the degradation of shear modulus with strain at small strains ranging from 0.001% to 1% is focused. The proposed model is formulated in terms of mean average skeleton stress, deviator stress, suction, specific volume and degree of saturation. Void ratio‐dependent hydraulic hysteresis is coupled with the stress–strain behaviour. Different from other elastoplastic models for unsaturated soils, plastic strains are allowed inside bounding surfaces. In this paper, details of model formulations and calibration procedures of model parameters are presented. To evaluate the capability of the new model, it is applied to simulate a series of triaxial compression tests on compacted unsaturated silt at various suctions. Effects of suction, drying and wetting as well as net stress on unsaturated soil behaviour are well captured. The model shows good predictions of the degradation of shear modulus with strain over a wide range of strains from 0.001% to 1%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
非饱和土的水力和力学特性及其弹塑性描述   总被引:6,自引:3,他引:3  
孙德安 《岩土力学》2009,30(11):3217-3231
简单回顾了非饱和土本构模型研究的发展历程,总结了近几年非饱和土弹塑性本构模型最新研究成果,重点介绍了能统一模拟非饱和土水力性状和力学性状耦合的弹塑性本构模型。通过对建立模型过程中的几个核心问题讨论,较详细地说明该类模型的结构、性能以及相关问题。非饱和土水力性状的滞回性用假定存在饱和度弹性区间的弹塑性过程来模拟;该类耦合模型不仅考虑了吸力对非饱和土水力性状和力学性状的影响,还考虑了饱和度对应力-应变关系和强度的影响以及土体变形对土-水特征曲线的影响。用同一套模型参数,耦合模型可统一预测在吸力控制或含水率控制下沿各种应力路径下非饱和土的水力-力学特性,并简单介绍了膨胀性非饱和土的弹塑性本构模型以及耦合模型在有限元数值计算中的应用。  相似文献   

6.
7.
The coupled mechanical and water retention elasto-plastic constitutive model of Wheeler, Sharma and Buisson (the Glasgow coupled model, GCM) predicts unique unsaturated isotropic normal compression and unsaturated critical state planar surfaces for specific volume and degree of saturation when soil states are at the intersection of mechanical (M) and wetting retention (WR) yield surfaces. Experimental results from tests performed by Sivakumar on unsaturated samples of compacted speswhite kaolin confirm the existence and form of these unique surfaces. The GCM provides consistent representation of transitions between saturated and unsaturated conditions, including the influence of retention hysteresis and the effect of plastic volumetric strains on retention behaviour, and it gives unique expressions to predict saturation and de-saturation conditions (air-exclusion and air-entry points, respectively). Mechanical behaviour is modelled consistently across these transitions, including appropriate variation of mechanical yield stress under both saturated and unsaturated conditions. The expressions defining the unsaturated isotropic normal compression planar surfaces for specific volume and degree of saturation are central to the development of a relatively straightforward methodology for determining values of all GCM parameters (soil constants and initial state) from a limited number of laboratory tests. This methodology is demonstrated by application to the experimental data of Sivakumar. Comparison of model simulations with experimental results for the full set of Sivakumar’s isotropic loading stages demonstrates that the model is able to predict accurately the variation of both specific volume and degree of saturation during isotropic stress paths under saturated and unsaturated conditions.  相似文献   

8.
Han  Bowen  Cai  Guoqing  Zhou  Annan  Li  Jian  Zhao  Chenggang 《Acta Geotechnica》2021,16(5):1331-1354

The interparticle bonding effect due to water menisci plays an important role in the hydromechanical coupling properties of unsaturated soils. This paper presents an unsaturated hydromechanical coupling model that considers the influence of matric suction, degree of saturation, and microscopic pore structure on the interparticle bonding effect. The enhanced effective stress and bonding variable are selected as constitutive variables. The bonding variable is correlated with the ratio between unsaturated void ratio and saturated void ratio. The deformation characteristics of unsaturated soils are described based on the bounding surface plasticity theory. A soil–water characteristic model that considers deformation and hydraulic hysteresis is integrated into the constitutive model to achieve hydromechanical coupling. The proposed model can effectively describe the hydromechanical coupling characteristics and the meniscus bonding force of unsaturated bimodal structure soils; the model parameters can be easily obtained through routine experiments. The experimental results of unsaturated isotropic compression, the wetting/drying cycle, and unsaturated triaxial shear tests are used to validate the capability of the proposed model.

  相似文献   

9.
吸力历史对非饱和土力学性质的影响   总被引:1,自引:0,他引:1  
张俊然  许强  孙德安 《岩土力学》2013,34(10):2810-2814
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态变量,不能直接考虑吸力历史及其饱和度对非饱和土的应力-应变关系和强度的影响。非饱和土三轴试验结果表明,即使净应力和吸力相同的条件下,经过干-湿循环试样与未经过干-湿循环试样的应力比-应变关系和强度是不相同的。在其他条件相同时,经历过干-湿循环的试样比未经过干-湿循环试样的应力比-应变关系要高、强度大和体变小。经过干-湿循环试样的饱和度低而强度高,主要是由于经过先期较高的吸力,相当于受过较大的前期有效压力,使试样成为超固结土。更多不同吸力历史的对比试验有待于进一步研究,以便为非饱和土的水力-力学特性耦合弹塑性本构模型定量地表示上述非饱和土的性质提供基础性试验数据。  相似文献   

10.
Scaly clays are stiff and highly fissured clays often used as construction materials. This paper presents the results of triaxial compression tests carried out on saturated and unsaturated samples of a compacted scaly clay. Complementary investigation on the microstructural features and their evolution with the amount of water stored into the material are also presented in order to shed light on the evolution of the micro- and macroporosity with suction. The water retention behaviour of the compacted scaly clay is also addressed. The results from the controlled suction triaxial tests are used to discuss the applicability of a single-shear strength criterion to compacted double-structured clays when the effective stress concept for unsaturated soils is used. The choice of the degree of saturation to be included in the effective stress definition for obtaining a satisfactory representation of the shear strength is addressed. It is shown that the best results are obtained when the macropore degree of saturation is considered along with its evolution during the applied stress path.  相似文献   

11.
董建军  邵龙潭 《岩土力学》2006,27(Z1):95-98
应力路径对土的强度和变形性质具有重要影响。相对于饱和土而言,控制吸力条件下的非饱和土三轴压缩状态的应力路径研究更加复杂。随着非饱和土本构理论的不断发展,理论和试验研究结果表明,非饱和土弹塑性本构模型可以用来近似地描述非饱和土的强度和变形性质。因而,运用非饱和土弹塑性本构模型对控制吸力条件下的3种非饱和土三轴压缩应力路径试验进行数值模拟是一种有效的理论研究手段。采用Barcelona模型能够对此类试验进行较好的数值模拟,其研究结果表明,在控制吸力条件的三轴压缩状态下应力路径对非饱和土的强度和变形性质具有重要影响。  相似文献   

12.
孙德安 《岩土力学》2009,30(Z2):13-16
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态量,不能直接考虑饱和度或含水率对非饱和土的应力-应变关系和强度的影响。在非饱和土三轴试验结果表明,即使在净应力和吸力路径相同的条件下,具有不同饱和度试样的应力-应变关系和强度也是不同的。其他条件相同时,试样饱和度越高,其应力比-应变关系曲线越高,强度越大。最新的水力-力学特性耦合的弹塑性本构模型可以定量地表示上述非饱和土的性质  相似文献   

13.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Cavity expansion theory assists in the interpretation of in situ tests including the cone penetration test and pressuremeter test. In this paper, a cavity expansion analysis is presented for unsaturated silty sand exhibiting hydraulic hysteresis. The similarity technique is used in the analysis. The soil stress–strain behaviour is described by a bounding surface plasticity model. Results of oedometric compression tests, isotropic compression tests and triaxial shear tests for both saturated and unsaturated states are used to calibrate the model. The void ratio, suction, degree of saturation and effective stress are fully coupled in the analysis. The influence of where the initial hydraulic state is located on the soil–water characteristic curve on the cavity wall pressure is investigated and found to be significant. Also, the effects of three different drainage conditions (constant suction, constant moisture content and constant contribution of suction to the effective stress) on cavity wall pressure are studied. It is found that the drainage condition in which the contribution of suction to the effective stress is constant offers a good approximation to the other two. This may simplify interpretation of in situ tests. When testing occurs quickly, meaning a constant moisture content condition prevails, a constant contribution of suction condition can be assumed without loss of significant accuracy. The contribution of suction assumed in the interpretation can be taken as being equal to the in situ value, although this discovery may not be applicable to all soil types, constitutive models and soil–water characteristic curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The main objective of this paper is to examine how different engineering soils react to environmental variations and to provide correlations to characterize their behaviour under null external mechanical stress. Two French and two Algerian soils with liquid limits ranging from 36 to 112 were prepared under both slurry and Proctor compaction conditions, and then subjected to drying–wetting paths with suction controlled from several kPa to several hundreds of MPa. Experimental results are presented in five diagrams to show globally and simultaneously the shrinkage–swelling, saturation–desaturation and water retention characteristics. A reasonable consistency was observed between the oedometric and drying curves of slurry, confirming the equivalence between hydraulic loading (suction) and mechanical loading (consolidation stress) on the volume change behaviour of different soils. As an intrinsic parameter of soil nature, liquid limit was found to have a significant influence on the shrinkage limit, air-entry suction and compressibility of both slurry and compacted samples. For that reason, correlations between these characteristics and liquid limit were set up, providing a good basis for a first estimation of the drying–wetting curves. At the micro-scale, new experimental results were obtained: either on drying or wetting path, the micro-pores were almost unaffected, whereas, when matrix suction increased from 0.1 to 8 MPa, the volume of macro-pores decreased to quasi-closure. At last, the analogy between the compaction and drying–wetting curves, and the comparison of different methods to determine the water retention curve were addressed. Such analogies and comparisons contribute to a better understanding of the mechanisms of mechanical stress and suction.  相似文献   

18.
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour.  相似文献   

19.
The paper presents an approach to predicting variation of a degree of saturation in unsaturated soils with void ratio and suction. The approach is based on the effective stress principle for unsaturated soils and several underlying assumptions. It focuses on the main drying and wetting processes and does not incorporate the effects of hydraulic hysteresis. It leads to the dependency of water retention curve (WRC) on void ratio, which does not require any material parameters apart from the parameters specifying WRC for the reference void ratio. Its validity is demonstrated by comparing predictions with the experimental data on four different soils taken over from the literature. Good correlation between the measured and predicted behaviour indirectly supports applicability of the effective stress principle for unsaturated soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号