首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supracrustal units metamorphosed at mid-crustal conditions withinthe Paleoproterozoic Trans-Hudson Orogen are preserved withinan obliquely exposed continental collision zone on Baffin Island(Canada). Early granulite-facies assemblages yield thermobarometricdata and phase diagram information that define a steep, compressiveP–T path segment. These assemblages are bracketed betweenca. 1849 and 1835 Ma, and are interpreted to result from (1)heat advection by an 1865 +4/–2 to 1848 ± 2 MaAndean-type granitic batholith, and (2) a ca. 1845 Ma crustalthickening event associated with accretion of an intra-oceanicarc terrane. A subsequent regional metamorphic event is characterizedby the growth of retrograde, upper amphibolite-facies assemblagesthat define a clockwise, decompressive P–T path. Mineralgrowth is bracketed between 1820 ± 1 and 1813 ±2 Ma, and is localized within deformation zones associated withthe 1820 +4/–3 to 1795 ± 2 Ma collision of theRae and Superior cratons. The metamorphic history of BaffinIsland supports a progressive change from plate-margin to intraplateprocesses within an evolving convergent orogen during the Paleoproterozoicthat is similar to those documented in younger collisional belts. KEY WORDS: polymetamorphism; geochronology; Paleoproterozoic; Trans-Hudson Orogen  相似文献   

2.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

3.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

4.
In the early Proterozoic Wopmay Orogen (Northwest Territories,Canada), the occurrence of garnet-biotite-sillimanite/kyanite-plagioclase-quartzassemblages in pelitic schists at a variety of obliquely exposedstructural levels enables the use of calibrated geothermometersand geobarometers through 30 km of composite structural relief.Direct derivation of multipoint P-T paths from single garnetsis attained from core-to-rim microprobe analyses of zoned poikiloblasticgarnets, which contain biotite, plagioclase, quartz, and lesscommonly Al2SiO5 inclusions. The documented garnet zoning andthe entrapment of the mineral inclusions is compatible withpartial-equilibrium growth models. The lack of significant diffusionre-equilibration in the garnet interiors is favored by samplerestriction to medium-grade schists and is attested by the preservationof normal-zoning profiles, the lack of garnet diffusion babesaround biotite inclusions, the matching composition trends ofgarnet-core to -rim plagioclase inclusions with those of zonedmatrix plagioclase grains, and the systematic variation of thederived P-T data. Only the garnet rims, which are characterizedby a reversal of compositional trends and by textural resorption,are interpreted to indicate local post-thermal-peak re-equilibration. The calculated P-T paths quantify segments of uplift trajectoriescorresponding to pressure drops of 2?5–1?5 kb from maximaof 9?3–5?0 kb depending on structural level. This is concurrentwith initial increases of 25–75?C to peak-temperatureconditions and is followed by variable drops in temperatureduring continued decompression. Individual paths are consistentwith modelled variations of metamorphic conditions as a functionof loading, uplift, and erosion in overthrust terrains. Consideredwith U-Pb zircon geochronological data the P-T paths, studiedas a set, indicate an average uplift rate that varies spatiallyfrom 1?5–2?7 mm y–1. This variation can be relatedto late cross folding of the orogenic internal zone, suggestingthat the syn-metamorphic uplift was structurally controlled.The distribution of peak-temperature conditions attained duringdecompression is independent of structural depth. This, andthe inverted metamorphism documented in the Wopmay Orogen, requirethat final variations in temperature result from thermal relaxationof isotherms in, and away from, a hot crustal allochthon composedin part of high-T rift-fill units and a syntectonic graniticbatholith.  相似文献   

5.
HARLEY  SIMON L. 《Journal of Petrology》1988,29(5):1059-1095
Granulites from the Rauer Group, East Antarctica, were metamorphosedat 860?40?C during a high-grade tectonothermal episode youngerthan 1400 Ma and probably close to 1000 Ma in age. A spatialvariation of pressures of metamorphism at the thermal peak iscalculated for felsic and mafic granulites preserving garnet-orthopyroxene-plagioclaseassemblages with or without additional clinopyroxene and quartz.Pressures of 6 to 7.5 kb are derived for the northern partsof the Rauer Group, whereas 7–8?5 kb pressures are calculatedfor similar granulites some 10–20 km further south. Post-deformational reaction textures including orthopyroxene-plagioclasesymplectites after garnet in basic granulites and plagioclasemoats or rims on garnet and orthopyroxene in felsic granulitesindicate a decompressional pressure-temperature-time evolution(P-T-t) which is confirmed by garnet-orthopyroxene-plagioclase-quartzand garnet-orthopyroxene barometry of zoned and regrown minerals.A pervasive decompression through c. 2 to 3–5 kb in thenorthern Rauer Group and to 5–6 kb in the southern partof the region occurred at temperatures above 700?C and probablyin excess of 750?C. This P-T evolution, which indicates a uniformunroofing of some 6–9 km while quite high mid- to lower-crustaltemperatures only decreased by c. 100?C, is consistent withthe later stages of a prolonged collision-related thermal evolution.Comparisons of the P-T-t paths of the late Proterozoic granulitesfrom the Rauer Group and elsewhere in East Antarctica with calculatedP-T paths for simple collisional models where erosion terminatesthe heating phase show that externally- derived magmatic additionsand an enhanced total heat budget are necessary to produce theobserved high-temperature evolution.  相似文献   

6.
To constrain the tectonic and metamorphic history of the GrenvilleProvince of southern Ontario we have quantitatively evaluatedchanges in peak metamorphic pressures and temperatures in theregion. Pressures increase northwest from the Frontenac Axistowards the Grenville Front, and they increase from 4–6kb near Madoc to 10–11 kb south of North Bay. Furtherto the north pressures decrease to 8–9 kb in the GrenvilleFront Tectonic Zone north of the French and Mattawa Rivers.Temperatures form a broad high, reaching 800?C northeast ofParry Sound, and decreasing to 400–500?C in the HastingsLow near Madoc, 600–650?C east towards the Ottawa River,and 650–700?C near Sudbury. This regional P-T distributionis in good agreement with constraints available from the distributionof aluminosilicate polymorphs. Comparison of thermobarometric results with regional tectonicfeatures shows a sharp discontinuity across the Mattawa andFrench Rivers, with a 1–2-kb pressure drop to the north.This implies that the major movement along this zone since theGrenville event was ‘south-side-up’ rather than‘north-side-up’ as suggested by Lumbers (1971).Large P-T discontinuities are not apparent across the domainboundaries mapped by Davidson and co-workers east of Parry Sound,but small discontinuities may exist. Sparse data may indicatethat the Central Metasedimentary Belt equilibrated at 1–2kb lower pressures than the Central Gneiss Terrane. Zoning profiles in garnet-pyroxene pairs have been used to placeconstraints on the metamorphic pressure-temperature-time pathin the Parry Sound, Port Severn, Bancroft, and Mattawa areasof the Grenville Province, Ontario. A nonlinear fitting routinewas used to obtain best-fit core and rim analyses for garnetsand pyroxenes. These results were combined with plagioclasecore/rim analyses to obtain estimates of peak and retrogradeconditions. The resultant retrograde P-Tpath has a slope of7 ? 10 b/?C, and involves pressure changes of 0?6–2?1kb for temperature changes of 60–130?C. Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   

7.
GANNE  J.; BUSSY  F.; VIDAL  O. 《Journal of Petrology》2003,44(7):1281-1308
Three types of garnet have been distinguished in pelitic schistsfrom an epidote–blueschist-facies unit of the Ambin andSouth Vanoise Briançonnais massifs on the basis of texture,chemical zoning and mineral inclusion characterization. Type-1garnet cores with high Mn/Ca ratios are interpreted as pre-Alpinerelicts, whereas Type-1 garnet rims, Type-2 inclusion-rich porphyroblastsand smaller Type-3 garnets are Alpine. The latter are all characterizedby low Mn/Ca ratios and a coexisting mineral assemblage of blueamphibole, high-Si phengite, epidote and quartz. Prograde growthconditions during Alpine D1 high-pressure (HP) metamorphismare recorded by a decrease in Mn and increase in Fe (±Ca)in the Type-2 garnets, culminating in peak PT conditionsof 14–16 kbar and 500°C in the deepest parts of theAmbin dome. The multistage growth history of Type-1 garnetsindicates a polymetamorphic history for the Ambin and SouthVanoise massifs; unfortunately, no age constraints are available.The new metamorphic constraints on the Alpine event in the massifsdefine a metamorphic T ‘gap’ between them and theirsurrounding cover (Briançonnais and upper Schistes Lustrésunits), which experienced metamorphism only in the stabilityfield of carpholite–lawsonite (T < 400°C). Thesedata and supporting structural studies confirm that the Ambinand South Vanoise massifs are slices of ‘eclogitized’continental crust tectonically extruded within the SchistesLustrés units and Briançonnais covers. The correspondingtectonic contacts with top-to-east movement are responsiblefor the juxtaposition of lower-grade metamorphic units on theAmbin and South Vanoise massifs. KEY WORDS: Alpine HP metamorphism; Ambin and South Vanoise Briançonnais basements; metamorphic gaps; multistage garnets; Western Alps  相似文献   

8.
Mineral chemistries and textures are described from a suiteof sapphirine-bearing granulites from the Gruf Complex of theItalian Central Alps. The granulites contain combinations ofgarnet, orthopyroxene, sapphirine, sillimanite, cordierite,biotite, quartz, spinel, corundum, staurolite, plagioclase,K-feldspar, ilmenite and rutile, in assemblages with low (usuallynegative) variance. They are outstanding in that they preservea textural and chemical record of a protracted metamorphic evolution. Reaction textures are common and include: (i) pseudomorphs (e.g.of sillimanite after kyanite); (ii) relatively coarse-grainedmonomineralic reaction rims (e.g. of cordierite between sapphirineand quartz); (iii) fine-grained symplectitic coronas (e.g. oforthopyroxene + sapphirine round garnet); (iv) inclusions, ingarnet cores, of minerals (e.g. staurolite) not found elsewherein the rocks. Detailed microprobe study has revealed large chemical variationswithin each phase. Different textural types of each phase havedifferent compositions, and strong zoning is preserved in garnet(Mg/(Mg + Fe) from 0.30 to 0.61) and coarse sapphirine. Inclusionpopulations in garnet correlate with host composition. The textural and chemical features are interpreted in termsof successive equilibrium assemblages and reactions. Metamorphicconditions operative at each stage in the evolution are calculatedusing published geothermometers and geobarometers as well asthermodynamically calibrated MAS and FASH equilibria. The resultsare used to construct a P—T-time path for the sapphirine-granulites,which can be summarized as follows: (i) Increasing T at high P (>7 kb). Partial melting. (ii) A maximum T of 830 ?C attained at 10 kb. (iii) Almost isothermal decompression, reaching 750 ?C at 5kb, under conditions of low µH2O. (iv) Further cooling, and decompression. Localized hydration.Rocks exposed. The P—T-time path is interpreted as the product of a singlemetamorphic cycle (the tertiary ‘Lepontine’ event)and is extrapolated to the Gruf Complex as a whole. When combinedwith published geochronological data, the results indicate anaverage uplift rate in excess of 2 mm/yr for the Gruf Complexbetween 38 and 30 Ma ago. An in situ partial melting origin for the sapphirine-granulitesis favoured. Extraction of an iron-rich granitic liquid froma normal pelitic palaeosome could generate a refractory residuewith the required Mg, Al-rich composition. The change in bulksolid composition during partial melting is thought to accountfor the extraordinarity strong zoning in the garnets.  相似文献   

9.
Chemical relationships in garnet-orthopyroxene-plagioclase-quartzrocks are governed principally by three equilibria: the Fe-Mgexchange reaction between garnet and orthopyroxene, the solubilityof alumina in orthopyroxene coexisting with garnet, and thereaction of garnet and quartz to form orthopyroxene and plagioclase.Various thermobarometric calibrations of these equilibria havebeen applied to granulite-facies gneisses from two areas ofthe Proterozoic Complex of East Antarctica, and a wide rangeof P-T estimates is obtained for each area. Some of this P-Tvariation reflects the different thermodynamic data and mineralmixing models used by each calibration, but other differencesare attributed to the effects of retrograde Fe-Mg exchange.An inter-specimen spread of temperatures in each area, obtainedfor mineral core compositions with a single calibration of thegarnet-orthopyroxene exchange reaction, is attributed to a variableextent of Fe-Mg exchange on cooling from peak metamorphic conditions.A similar spread of pressures from the garnet-orthopyroxenealumina solubility barometer indicates that this calibrationis also reset by retrograde Fe-Mg exchange. In contrast, pressuresfrom the garnet-orthopyroxene-plagioclase-quartz barometer formineral cores show little variation between specimens from thesame area, indicating that this equilibrium is relatively insensitiveto changes in the Fe-Mg distribution coefficient and that derivedpressures are more likely to reflect peak metamorphic conditionsthan those from the alumina solubility barometer. Temperaturescan be corrected for Fe-Mg exchange using the Fe-Mg distributioncoefficient required to bring pressures from the exchange-sensitivealumina solubility barometer into agreement with reference pressurescalculated from the exchange-insensitive garnet-orthopyroxene-plagioclase-quartzbarometer. These corrected temperatures are closure temperaturesfor Al diffusion, which in many cases are likely to be goodestimates for the peak metamorphic temperature. The extent oftemperature correction in these specimens is 0–140C,and can be qualitatively related to textural features such asgrain size and mutual proximity of garnet and orthopyroxenegrains. Retrograde Fe-Mg exchange has clearly been significantin these rocks, with major consequences for thermobarometry.It is likely that Fe-Mg exchange during cooling is more widespreadthan currently recognized, and that the suggested convergencemethod for retrieving peak metamorphic conditions is applicableto other granulite terrains.  相似文献   

10.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

11.
This paper concentrates on the petrology of eclogite-faciesmetapelites and, particularly, the significance of staurolitein these rocks. A natural example of staurolite-bearing eclogitic micaschistsfrom the Champtoceaux nappe (Brittany, France) is first described.The Champtoceaux metapelites present, in addition to quartz,phengite, and rutile, two successive parageneses: (1) chloritoid+staurolite+garnetcores, and (2) garnet rims+kyanite?chloritoid. Detailed microprobe analyses show that garnet and chloritoidevolve towards more magnesian compositions and that stauroliteis more Fe-rich than coexisting garnet. A comparison of thestudied rocks with other known occurrences of eclogitic metapelitesshows that whereas staurolite is always more Fe-rich than garnetin high-pressure eclogites, the reverse is true in low- to medium-pressuremicaschists. Phase relations between garnet, staurolite, chloritoid, biotite,and chlorite are analysed in the KFMASH system (with excessquartz, phengite, rutile, and H2O). The topology of univariantreactions is depicted for a normal and a reverse Fe-Mg partitioningbetween garnet and staurolite. Mineral compositional changesare also predicted for varying bulk-rock chemistries. In the studied micaschists, the zonal arrangement of garnetinclusions and the progressive compositional changes of ferromagnesianphases record part of the prograde P–T path, before theattainment of ‘peak’ metamorphic conditions (atabout 65O–7OO?C, 18–20 kb). The retrograde path,which records the uplift of the Champtoceaux nappe, occurs underdecreasing temperatures.  相似文献   

12.
WATERS  D. J. 《Journal of Petrology》1986,27(2):541-565
Sapphirine occurs with cordierite, phlogopite, spinel, sillimanite,corundum, orthopyroxene, and gedrite in granulite facies Mg-and Al-rich paragneisses within the low P, high T NamaqualandMetamorphic Complex. The gneisses reveal a three-stage texturalhistory. Sapphirine appeared during a second stage of progrademineral growth which produced nodular structures and intergrowthsinvolving spinel, corundum, and sillimanite, pseudomorphingan earlier generation of coarse, amphibolite facies minerals.A third generation of coarse, cross-cutting, mainly hydrousminerals (gedrite, kornerupine, phlogopite) is sporadicallydeveloped. The wide variety of cofacial mineral assemblages allows thedelineation of the stable mineral associations of sapphirinein the system K2O-MgO-FeO-Al2O3-SiO2-H2O under P-T conditionsindependently estimated at about 5 kb, 750–800 °C.The natural assemblages provide constraints which, taken togetherwith existing thermodynamic and experimental data, allow theestimation of P-T slopes of sapphirine equilibria. The mineraltextures thus indicate sapphirine growth under increasing T,decreasing a(H2O), and constant or slightly increasing P. The preservation of prograde reaction textures during fine-grainedmineral growth probably results from the reduced importanceand/or more CO2-rich composition of the metamorphic fluid undergranulite facies conditions in these refractory rocks. Aqueousfluids were locally reintroduced after the metamorphic peak.  相似文献   

13.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

14.
The Hwacheon granulite complex (HGC), occupying the northeasternmargin of the Gyeonggi massif, consists mainly of garnetiferousleucocratic gneiss and leucogranite together with minor kyanite–garnetgneiss, aluminous gneiss, mafic granulite and garnet amphibolite.Mineral assemblages and reaction textures in various rock typesof the HGC document five distinct metamorphic stages: pre- (M1)and peak (M2) granulite-facies metamorphism; lower temperature,high (M3) and low (M4) pressure upper amphibolite-facies metamorphism;and local retrogression (M5) producing andalusite-bearing assemblages.Each metamorphic stage can be integrated to give a compositeP–T path consisting of two distinct trajectories, characterizedby clockwise P–T loops at relatively high and low temperatures,respectively. The first P–T trajectory (M1–M3) correspondsto a Palaeoproterozoic tectonometamorphic event responsiblefor the formation of the granulite complex at  相似文献   

15.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   

16.
The petrologic and isotopic-geochronologic study of basement rocks that were penetrated by a deep borehole in the marginal part of the East European Platform revealed that its section overlain by the Vendian-Paleozoic sedimentary cover is Early Proterozoic in age and largely consists of aluminous migmatized biotite, biotite-cordierite, and biotite-cordierite-sillimanite gneisses, which are intruded by granites, plagiogranites, and metatonalites. The lower part of the section is dominated by amphibole schists and amphibolites with subordinate nonmetamorphosed dolerite dikes and pegmatite veins. By metamorphism parameters (T = 630–680°C, P = 2–4 kbar), the metamorphic complex may be considered as the shallowest one, compared with other Early Proterozoic complexes, developed at least in the southwestern part of Fennoscandia. The progressive decrease in the mineral-formation pressure observed in the Lower Proterozoic metamorphic rocks southward, away from the Karelian Craton is likely explained by the tectonic transport (thrusting) of the Svecofennides over the margin of the Karelian Craton and their subsequent deeper erosion near the craton. The magmatic crystallization of metamorphic palgiogranites, penetrated at depths of 925–928 and 1004 m, is estimated by the U-Pb ID-TIMS method on zircons to occur 1860 ± 9 Ma ago. It is shown that by their age, the REE composition, and isotopic-geochemical characteristics, these rocks are close to the plagiogranites formed in the southeastern extremity of the Svecofennnian belt in the present-day northern Ladoga region and the Karelian Isthmus. No rocks, which could be correlated by their lithology with the Archean rocks of the Karelian Craton, are found.  相似文献   

17.
The study of the alpine metamorphism of three suites of Fe-Timetagabbros occurring in the western Alps ophiolites has showna set of reactions governed by T, P, XH2O, and diffusion. T-Pestimates point to 350?50?C at a minimum of 9–10 kb forthe Queyras blueschist rocks and to 450–500 ?C at a minimumof 12–13 kb for the Lanzo and Rocciavr` eclogitized rocks.These variations are the result of different T-P-time trajectoriesduring subduction/obduction events of alpine age. In the Fe-Timetagabbros, little-deformed volumes showing a crystallizationhistory controlled by local equilibrium are bounded by mylonites.Water-poor and water-rich volumes alternate during eclogitizationof the Rocciavr? suite. The persistence in the little-deformedrocks of prealpine metastable relics, of corona structures andof chemical gradients, demonstrates that a complete high pressureequilibration is inhibited by slow reaction kinetics and slowdiffusion. Only in the mylonites has the catalytic effect ofdeformation favoured an approach to bulk-rock metamorphic equilibration.In the eclogitized coronitic rocks the apparent O2, releasefrom the alteration of the magmatic opaques plays an importantrole in reaction rates; increasing extent of eclogitizationmay be enhanced either by the release of free O2 from the rocks,or by a process in which new H2O formed by the combination ofoxygen with hydrogen introduced into the system.  相似文献   

18.
SAJEEV  K.; OSANAI  Y. 《Journal of Petrology》2004,45(9):1821-1844
Mg- and Al-rich granulites of the central Highland Complex,Sri Lanka preserve a range of reaction textures indicative ofa multistage PT history following an ultrahigh-temperaturemetamorphic peak. The granulites contain a near-peak assemblageof sapphirine–garnet–orthopyroxene–sillimanite–quartz–K-feldspar,which was later overprinted by intergrowth, symplectite andcorona textures involving orthopyroxene, sapphirine, cordieriteand spinel. Biotite-rims, kornerupine and orthopyroxene-rimson biotite are considered to be late assemblages. Thermobarometriccalculations yield an estimated PT of at least 1100°Cand 12 kbar for the near-peak metamorphism. Isopleths of Al2O3in orthopyroxene are consistent with a peak temperature above1150°C. The PT path consists of four segments. Initialisobaric cooling after peak metamorphism (Segment A), whichproduced the garnet–sapphirine–quartz assemblage,was followed by near-isothermal decompression at ultrahigh temperature(Segment B), which produced the multiphase symplectites. Furtherisobaric cooling (Segment C) resulted in the formation of biotiteand kornerupine, and late isothermal decompression (SegmentD) formed orthopyroxene rims on biotite. This evolution canbe correlated with similar PT paths elsewhere, but thereare not yet sufficient geochronological and structural dataavailable from the Highland Complex to allow the tectonic implicationsto be fully assessed. KEY WORDS: central Highland Complex; granulites; multistage evolution; Sri Lanka; UHT metamorphism  相似文献   

19.
A high-grade metamorphic terrane in the southern part of theCalabrian massif (South Italy) has been petrographically mappedand the dominant rock types petrologically investigated. Bothmethods of investigation have led to the recognition of a continuoussection through a former lower crust which is 7 km thick. Itslower part consists predominantly of metabasic rocks togetherwith minor felsic granulites, its upper part of metapeliteswith minor metabasic and metacarbonate rocks. The rocks experienced a common two-stage prograde metamorphicevolution in which the second stage occurred after the lastpenetrative deformation. The prograde metamorphism which, accordingto radiometric dates, ended in late Hercynian time, was of themedium-pressure type of Miyashiro (1961), and equilibrationoccurred in the ‘medium-pressure granulite field’(characterized by the instability of olivine-plagioclase aswell as garnet-clinopyroxene-quartz). Estimates of the highestPT conditions of prograde metamorphism give 7–8kb and approximately 800°C at the base, but 5–6 kband 650–700°C at the top of the section, at whichthe paragenesis staurolite-quartz indicates the transition tothe amphibolite facies. The existence of a metamorphic gradientin the lower crust section is demonstrated by the systematicchange in the compositions of ferro-magnesian minerals in divariantmetapelitic assemblages. The metamorphic evolution during the excavation history of theformer lower crust has been reconstructed using the numerousdisequilibrium reaction textures preserved in most rock types.The highest metamorphic conditions ended with a pressure decreaseof approximately 1.5 to 2 kb, which was followed by a periodof quasi-isobaric cooling in the middle crust. During this cooling,the stability field of the ‘high-pressure granulites’(garnet-clinopyroxene-quartz) was reached. The pressure decrease, which induced the end of the high-temperaturehistory of the lower crust, is interpreted as reflecting theerosion of the uppermost crustal levels as a response to overlappingof large crustal segments during the Hercynian orogeny. Consequently,the deduced PT path of the upper, i.e. overthrust crustalsegment is thought to have been tectonically controlled.  相似文献   

20.
PT conditions and prograde PT paths have beencalculated for amphibolite-grade pelites and amphibolites fromCordillera Darwin, Tierra del Fuego, Chile. Peak PT conditionsare nearly all within the kyanite stability field; temperaturesgenerally show an increase with increasing grade, but pressureshave a less consistent trend, possibly increasing slightly fromgarnet to kyanite grade. PT paths from pelites show heatingby 80–100C during loading of 0•2–3 kbar. Texturalanalysis and previous structural work indicate that this segmentof the path correlates with back-folding deformation. PTpaths from two Mg-rich garnet amphibolites suggest a decreasein pressure of as much as 3 kbar with 25–50C of heatingfrom the kyanite stability field to the sillimanite, and areconsistent with pervasive, minor development of fibrolitic sillimanitealong plagioclase grain boundaries. Together, the PTpath segments from pelites and amphibolites constitute a clockwisePT trajectory. The proposed clockwise PT paths are consistent with theinterpretation that Cordillera Darwin represents an extensionallyexhumed metamorphic core complex, in which loading during garnetgrowth in the pelitic rocks was succeeded by differential upliftduring garnet growth in magnesian amphibolites. * Present address: Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号