首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Zircon U–Pb sensitive high mass-resolution ion microprobe dating was carried out on three types of granitic rock (gneissose biotite granodiorite, biotite granite and two-mica granite) from the Cretaceous Ryoke belt of the Kinki district, Southwest Japan. The results give the ages of granitic magmatism in the Shigi-san area of between 87 and 78 Ma and suggest extensive melting of the Cretaceous Ryoke granitic crust to form the two-mica granite, probably at ca 80 Ma. Discrimination into older and younger granites based on development of gneissosity does not appear to represent the sequence of magma generation, although there is some scope in the interpretation of the zircon U–Pb data that would allow all three granites to form at 83 Ma. Compilation of chemical Th-U-total Pb isochron dating method ages, whole rock Rb–Sr isotope ages and U–Pb isotope ages indicates that most Ryoke plutonism occurred from ca 70 Ma to ca 100 Ma. Younger (85 Ma–70 Ma) plutonism with the formation of two-mica granite occurred only in the eastern sector of the Ryoke belt, including the Kinki District.  相似文献   

2.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   

3.
Precambrian basement rocks have been affected by Caledonian thermal metamorphism. Caledonian‐aged zircon grains from Precambrian basement rocks may have resulted from thermal metamorphism. However, Hercynian ages are rarely recorded. Zircon U–Pb Sensitive High Resolution Ion Microprobe (SHRIMP) dating reveals that zircon ages from the Huyan, Lingdou, and Pengkou granitic plutons can be divided into two groups: one group with ages of 398.9 ±5.3 Ma, 399 ±5 Ma, and 410.2 ±5.4 Ma; and a second group with ages of 354 ±11 Ma, 364.6 ±6.7 Ma, and 368 ±14 Ma. The group of zircon U–Pb ages dated at 410–400 Ma represent Caledonian magmatism, whereas the 368–354 Ma ages represent the age of deformation, which produced gneissosity. The three plutons share geochemical characteristics with S‐type granites and belong to the high‐K calc‐alkaline series of peraluminous rocks. They have (87Sr/86Sr)i ratios of 0.710 45–0.724 68 and εNd(t) values of ?7.33 to ?10.74, with two‐stage Nd model ages (TDM2) ranging from 1.84 Ga to 2.10 Ga. Magmatic zircon εHf(t) values range from ?3.79 to ?8.44, and have TDMC ages of 1.65–1.93 Ga. The data suggest that these granites formed by partial melting of Paleoproterozoic to Mesoproterozoic continental crust. A collision occurred between the Wuyi and Minyue microcontinents within the Cathaysia Block and formed S‐type granite in the southwest Fujian province. The ca 360 Ma zircon U–Pb ages can represent a newly recognized period of deformation which coincided with the formation of the unified Cathaysia Block.  相似文献   

4.
The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the wellexposed post-collisional plutons in northeastern Nigeria.The calc-alkaline rock association consists of quartz monzodiorite,hornblende biotite granite,biotite granites and aplite which intruded the older basement consisting mainly of low-lying migmatitic gneisses and amphibolites during the Neoproterozoic Pan-African Orogeny.Petrological and geochemical studies have revealed the presence of hornblende,iron oxide,and metaluminous to slightly peraluminous characteristics in the granitoids which is typical of I-type granite.The granitoids are also depleted in some high field strength elements(e.g.Nb and Ta) as well as Ti.Plots of Mg#versus SiO_2 indicate that the granite was derived from partial melting of crustal sources.Lithospheric delamination at the waning stage of the PanAfrican Orogeny possibly triggered upwelling of hot mafic magma from the mantle which underplated the lower crust.This,in turn,caused partial melting and magma generation at the lower to middle-crustal level.However,the peculiar geochemical characteristics of the quartz monzodiorite especially the enrichment in compatible elements such as MgO,Cr,and Ni,as well as LILE element(e.g.K,Ce,Cs,Ba,and Sr),signify that the rock formed from an enriched upper mantle source.The emplacement of high-K granites in the Madara Hill,therefore,marked an important episode of crustal reworking during the Neoproterozoic.However,further isotopic work is needed to confirm this model.  相似文献   

5.
The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2―6 km wide, with an area of 140 km2, located at the north margin of the Bashikaogong Basin in the north Altun terrain. It intruded into schist, metapelite and metatuff of Precambrian ages. This granitoid complex consists of darkish quartz diorite, grey granite, pink granite and pegmatite. Geochemically, the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies, and the other gran- ites have S-type affinity and to high-K calc-alkaline series. Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites, which is 481.6±5.6 Ma for quartz diorite, 437.0±3.0 Ma―433.1±3.4 Ma for grey granite and 443±11 Ma―434.6±1.6 Ma for pink granite, re- spectively. Combined with regional geology, we think that the quartz diorite formed in tectonic envi- ronment related to oceanic crust subduction and the granites in post-collision.  相似文献   

6.
Quanshu Yan  Xuefa Shi 《Island Arc》2014,23(3):221-235
Major element and trace element compositions, and Sr, Nd and Pb isotopic compositions for postcollisional granites from the Laoshan granitic complex, in the eastern side of the Triassic suture between the South China and North China tectonic blocks were determined. The granites are alkaline, A‐type and can be further classified as A1 granites. The trace element composition of these granites is transitional between those of oceanic island basalt and enriched mid‐oceanic ridge basalt, with depletions in Ba, Sr, P, and Ti that can be ascribed to mineral fractionation and enrichments in Cs, Rb, Th and U possibly resulted from the involvement of slab fluids. The isotopic signature of Laoshan granites represent a mixture between an enriched mantle type 1 (EMI)‐like end‐member and lower continental crust (LCC). We propose that the magmas that formed the Laoshan A1 granites are a mixture between those derived from the EMI‐like delaminated eclogitic rocks (subsequently enriched by fluids released from Mesozoic Pacific subducted slab) and those derived from the LCC, which consists of granulites or metamorphic residues from the prior generation of I‐type granites in the region. The mixed magmas then experienced a strongly alkali feldspar‐dominated fractionation prior to their emplacements as A‐type granites in the Laoshan granitic complex.  相似文献   

7.
Abstract Meatiq and Hafafit core complexes are large swells in the Eastern Desert of Egypt, comprising two major tectono‐stratigraphic units or tiers. The lower (infrastructure) unit is composed of variably cataclased gneissose granites and high‐grade gneisses and schists. It is structurally overlain by Pan–African ophiolitic mélange nappes (the higher unit). The two units are separated by a low‐angle sole thrust, along which mylonites are developed. Major and trace element data indicate formation of the gneissose granites in both volcanic arc and within‐plate settings. Nevertheless, all analyzed gneissose granites and other infrastructural rocks, exhibit low initial ratios (Sri) (<0.7027), positive εNd(t) (+4.9 to +10.3) and Neoproterozoic Nd model age (TDM) (592–831 Ma for the gneissose granite samples). Although these values are compatible with other parts of the Arabian– Nubian Shield considered to be juvenile, the εNd(t) values and several incompatible element ratios of the gneissose granites are too low to be derived from a mantle source without contribution from an older continental crust. Our geological, Sr–Nd isotopic and chemical data combined with the published zircon ages indicate the existence of a pre‐Neoproterozoic continent in the Eastern Desert that started to break up at ca 800 Ma. Rifting and subsequent events caused the formation of oceanic crust and emplacement within‐plate alkali basalts in the hinterland domains of the old continent. The emplacement of basaltic magma might have triggered melting of lower crust in the old continent and resulted in emplacement of the within‐plate granite masses between 700 Ma and 626 Ma. The granite masses and other rocks in the old continent have been subjected to deformation during the over‐thrusting of Pan–African nappes, probably because of the oblique convergence between East and West Gondwanaland. Rb–Sr isotopes of the gneissose granites in both Meatiq and Hafafit core complexes defines an isochron age of 619 ± 25 Ma with Sri of 0.7009 ± 0.0017 and mean squares of weighted deviates = 2.0. We interpret this age as the date of thrusting of the Pan–African nappes in the Eastern Desert. Continued oblique convergence between East and West Gondwanaland could have resulted in the formation northwest–southeast‐trending Meatiq and Hafafit anticlinoriums.  相似文献   

8.
The Queershan composite granitic pluton is located in the north of the late Paleozoic Yidun arc collision-orogenic belt, eastern Tibetan Plateau. The main rock types are coarse-grained porphyritic alkalic-monzonite granite with minor fine-grained porphyritic monzogranite and granodiorite distributed in the eastern and southwestern regions. Here we report their zircon U-Pb ages and geo- chemical data. The intrusive contact relations indicate that granodiorite was formed earlier than the alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma). These suggest that the Queershan composite granitic pluton was formed through three-stage magmatic events. The alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma) are characterized by high SiO2(73.5%–77.7%), K2O+Na2O(6.9%–8.5%), Ga/Al ratios(2.6–3.4) and low Al2O3(11.8%–14.5%), CaO(0.25%–1.5%), MgO(0.18%–0.69%), negative Ba, Sr and Eu anomalies, showing A-type granite affinities. The granodiorite exhibits lower SiO2, P2O5 and K2O+Na2O contents, but higher Al2O3, CaO and MgO contents than alkalic-monzonite granite and monzogranite, showing I-type granite affinity. 176Hf/177 Hf ratios of the alkalic-monzonite granite and the monzogranite are 0.282692–0.282749 and 0.282685–0.282765, respectively, and with similar ?Hf(t) values(?0.56 to 1.43 and ?0.87 to 1.90 respectively). They also present similar TDM2 model ages(1.04–1.22 and 1.07–1.2 Ga respectively), indicating they may be sourced from a similar rock source, mostly like Kangding Complex. The homogeneity of the Hf isotopic compositions and the absence of the MMEs demonstrate that little depleted mantle materials have contributed to the source. We propose that the Mesoproterozoic crust materials of the Yangtze Craton exist beneath the Yidun arc terrane and support it was a dismembered part of the Yangtze Craton. The A-type granites of Queershan composite granitic pluton are most probably related to the closure of the Bangong-Nujiang Tethys ocean.  相似文献   

9.
The Mawat ophiolite is part of the Mesozoic Neo‐Tethyan ophiolite belt of the Middle East and is located in the Zagros Imbricate Zone of Iraq. It represents fossil fragments of the Neo‐Tethyan oceanic lithosphere within the Alpine collisional system between the Arabian and Eurasia Plates. The first U–Pb zircon dating of the Daraban leucogranite from the Mawat ophiolite provides a 207Pb–206Pb age of 96.8 ± 6.0 Ma. The age is 59.0 ± 6.0 m.y. older than the previously published age of the Daraban leucogranite obtained by 40Ar–39Ar muscovite dating method. The U–Pb dating of magmatic zircons collected from the Daraban leucogranite, which intrudes into the Mawat ophiolite, reveals that melting of the pelagic sediment beneath the hot Zagros proto‐ophiolite in an intra‐oceanic arc environment led to anatexis at the subduction front and the generation of granitic melts at 96.8 ± 6.0 Ma, which were emplaced in the overlaying mantle wedge. This process was a response to the initial formation of the Neo‐Tethys ophiolite above a northeast‐dipping intra‐oceanic subduction zone at 96.8 ± 6.0 Ma. Published 40Ar–39Ar muscovite dating from the same leucogranite dike yields plateau ages of 37.7 ± 0.3 Ma, reflecting that the age was reset during the Arabia–Eurasia continental collision. Therefore, the bimodal age populations from the granitic intrusion in the Mawat ophiolite preserve a record of the subduction to the collision cycle of the Zagros Orogenic Belt. The 59.0 ± 6.0 m.y. age difference from the Daraban leucogranite represents the duration of the subduction‐collision cycle of the Zagros Orogenic Belt in the Kurdistan region of Iraq and the time span for the closure of the Neo‐Tethys Ocean along the northern margin of the Arabian plate.  相似文献   

10.
In this study, new geochemical, zircon U–Pb, and Lu–Hf isotopic data are presented for volcanics from the Hadataolegai Formation of the central Great Xing'an Range (GXR) in Northeast China. These new data offer insights into the petrogenesis of the volcanics of the Hadataolegai Formation and the tectonic evolution of the Paleo–Asian Ocean (PAO) and Mongol–Okhotsk Ocean (MOO). These volcanics of the Hadataolegai Formation are divided into andesite‐trachyandesites and dacite‐trachydacites. Zircon U–Pb ages show that the volcanics of the Hadataolegai Formation erupted between 230 Ma and 228 Ma during the Late Triassic, which agrees with recently obtained data. The volcanic rocks in this study have low Y (9.9–21.1 ppm) and Yb (0.78–2.02 ppm) contents, high Sr (444–954 ppm) contents, and slight Eu anomalies (δEu = 0.82 to 0.94), similar to ‘adakite‐like’ rocks. The dacites were formed by fractional crystallization of coeval andesitic magmas. The zircons within the andesite and trachyandesite yield higher positive εHf(t) values (+6.3 to +12.0) and model ages (TDM2) between 860 Ma and 453 Ma, which indicates that the magmas were generated by a newly accreted continental crustal source. Moreover, some of the volcanics are relatively high in MgO contents. These characteristics indicate that the volcanic magmas were derived from the partial melting of delaminated lower crust and mixing with mantle materials. Combining these data with previous studies, we suggest that the magmatism in the central GXR was governed by extension due to the closure of the PAO and the back‐arc extension associated with the southward subduction of the MOO plate (western GXR, near the Erguna Block).  相似文献   

11.
Late Triassic A‐type granites are identified in this study in Sarudik, SW Sumatra. We present new data on zircon U–Pb geochronology, whole‐rock major and trace elements and Sr‐Nd‐Hf isotope geochemistry, aiming to study their petrogenesis and tectonic implications. LA‐ICP‐MS U–Pb dating of zircon separated from one biotite monzogranite sample yields a concordia age of 222.6 ±1.0 Ma, indicating a Late Triassic magmatic event. The studied granites are classified as weakly peralumious, high‐K calc‐alkaline granites. They exhibit high SiO2, K2O + Na2O, FeO/(FeO + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, with enrichment of Rb, Th and U and depletion of Ba, Sr, P and Eu, showing the features of A‐type granites. The granites have zircon εHf(t) values from ?4.6 to ?0.4 and whole‐rock εNd(t) values from ?5.51 to ?4.98, with Mesoproterozoic TDM2 ages (1278–1544 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that the source of these A‐type granites is the Mesoproterozoic continental crust, without significant incorporation of mantle‐derived component, and their formation is controlled by subsequent fractional crystallization. The Sarudik A‐type granites are further assigned to A2‐type formed in post‐collisional environment. Combined with previous knowledge on the western SE Asia tectonic evolution, we conclude that the formation of the Late Triassic A‐type granites is related to the post‐collisional extension induced by the crustal thickening, gravitational collapse, and asthenosphere upwelling following the collision between the Sibumasu and the East Malaya Block.  相似文献   

12.
Zircons from two samples of the Sukeng pluton in the southwest Fujian Province, China, were analyzed by LA–ICP–MS with the aim of determining the timing of formation. The zircons from the two samples yield similar U–Pb ages of 100.47 ± 0.42 and 102.46 ± 0.69 Ma, indicating that the Sufeng pluton is contemporaneous with the Sifang and Luoboling plutons, all of which are also related to Cu–Au–Pb–Zn–Mo mineralization within the study area. All three plutons have geochemical features of I‐type granites, are high‐ to mid‐K calc‐alkaline metaluminous rocks, and have average molar Al2O3/ (CaO+Na2O+K2O) values of 0.95, initial 87Sr/86Sr ratios of 0.70465–0.70841, εNd(t) values at 101 Ma from –1.72 to –7.26, and two‐stage Nd model ages (T2DM) from 1.16 to 1.60 Ga. Zircons within these plutons have εHf(t) values at 101 Ma from –3.5 to 6.25 and T2DM ages from 0.74 to 1.46 Ga, suggesting these I‐type granites formed from magmas generated by partial melting of Mesoproterozoic to Neoproterozoic continental crust that mixed with mantle‐derived magmas. The magmatism was associated with thickening of the lower crust caused by collisions between microcontinents in the Cathaysian Block, which were driven by Early Cretaceous subduction of the Pacific Plate.  相似文献   

13.
Granulite facies metamorphism and crustal anatexis exist in the East Cathaysia Block, the exact timing of granulite facies partial melting and its link with orogenesis have not been well constrained. In this study, we carried out petrography, whole rock geochemistry, and zircon U–Pb dating, trace elements and Hf isotopes analyses on Dazhe gneissic granite and banded migmatite from the Badu Group in southwest Zhejiang province in the East Cathaysia Block. The melts were produced through the dehydration of biotite, such as biotite + quartz + plagioclase = orthopyroxene + K-feldspar + melt and biotite + quartz + plagioclase + sillimanite = garnet + K-feldspar + melt. Zircons from these rocks show clear core-rim structure and yield rim and core concordant ages at 233 Ma and 1.83 Ga, respectively. The zircon rims suggesting the melts and the cores are suggesting the protolith of Dazhe gneissic granite and banded migmatite were crystallized from an evolving magma. The zircon cores and rims have negative εHf(t) = −2.2 ~ −6.3 and εHf(t) = −22.8 ~ −32.4, and they give suggestion of the presence of Neoarchean components. Although the major-element compositions of the gneissic granite and banded migmatite are slightly different, the trace-element spider diagram and REE pattern show they are similar, and then we find that the protoliths are A-type granodiorite/diorite. Combined with the published data, we suggested that the Dazhe gneissic granite and banded migmatite were formed through granulite facies partial melting at 233 Ma, which was promoted by crustal shortening and thickening of the collision orogeny between East Cathaysia Block and an unknown terrane with a NNE trend structure line. The protoliths (granite or granodiorite) of Dazhe gneissic granite and banded migmatite crystallized at 1.83 Ga by reworking of the Neoarchean components of East Cathaysia Block. The Paleoproterozoic (1912–1819 Ma) collisional orogeny and the later intraplate rifting stage are corresponding to the aggregation and breakup of the Columbia supercontinent.  相似文献   

14.
The new result of SHRIMP U–Pb zircon dating of the Kinshozan Quartz Diorite from the Kanto Mountains, Japan, provides 281.5 ± 1.8 Ma. The age is 30 m.y. older than the available age of the Kinshozan Quartz Diorite obtained by hornblende K–Ar method. The new U–Pb zircon age represents the time of crystallization of the Kinshozan Quartz Diorite. The hornblende K–Ar age indicates the time that the Kinshozan Quartz Diorite cooled down to 500 °C which is the closure temperature of the systematics. Permian granites are found in small exposures in Japan, and frequently referred to as 250 Ma granites. The Kinshozan Quartz Diorite is considered as a type of the 250 Ma granites, and the age was influential in establishing a model of Paleozoic tectonic evolution for the Japanese Islands. The new age of the Kinshozan Quartz Diorite provides the opportunity to re‐examine the model. The Kinshozan Quartz Diorite and other Permian granites in the south of the Median Tectonic Line of Japan were constituents of the Paleo‐Ryoke Belt. The geochemical characteristics of the granitic rocks in the Paleo‐Ryoke Belt indicated that the granitic rocks were formed in a primitive island arc environment, and the new trace element data also support this interpretation. Examination of the available data and results of the present study suggests the late Paleozoic granitic activity in Japan as follows. At about 310–290 Ma, arc magmatism generated adakitic granites and other granites in the South Kitakami Belt. Quartz diorite and tonalites of primitive characteristic, such as the Kinshozan Quartz Diorite and granites in the Maizuru Belt appear to have been formed at the immature island arc, and accreted to the Japanese Islands at the end of Paleozoic or early Mesozoic era. During 260–240 Ma, granitic activity took place in the Hida and Maizuru Belts as a part of the Asian continent.  相似文献   

15.
LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone.Zircon 206Pb/238U weighted mean ages of 474.9±2.3 and 478.3±1.7 Ma have been obtained for two gneiss granite samples respectively,which represent the formation age of the granite.This is the first discovery of the Early Ordovician magmatism in the Yarlung Zangbo junction zone.The rocks are high-K calcic-alkalic granite,contain tourmaline but not hornblende,with aluminum saturation index(ASI) of A/CNK1.1(1.10–1.20),and are enriched in Rb,Th and U and relatively depleted in Ba,Nb,Sr,Zr,Ti and Eu.They are strongly peraluminous S-type granite,resulting from partial melting of argillaceous components in the crust in a syn-collisional setting.According to previous studies as well as the analysis in this paper,the formation of the Xarru granite is probably related to the Andean-type orogeny in the process of subduction of the Proto-Tethys Ocean towards the Gondwanaland,and it is a product of partial melting of the thickened upper crust as a result of collision between blocks or micro-blocks in the northern margin of the Gondwana supercontinent in the process of oceanic subduction.The Xarru granite is identified as the Early Ordovician granite,indicating that the wall rocks had probably formed in the Cambrian or Precambrian.A crustal basement may exist in the Xarru region.  相似文献   

16.
Katsumi  Ueno  Satoe  Tsutsumi 《Island Arc》2009,18(1):69-93
This paper deals with a Lopingian (Late Permian) foraminiferal faunal succession of the Shifodong Formation in the Changning–Menglian Belt, West Yunnan, Southwest China, which has been geologically interpreted as one of the closed remnants in East Asia of the Paleo‐Tethys Ocean. The Shifodong Formation is the uppermost stratigraphic unit in thick Carboniferous–Permian carbonates of the belt. These carbonates rest upon bases consisting of oceanic island basalt and are widely accepted as having a Paleo‐Tethyan mid‐oceanic (seamount‐ or oceanic plateau‐top) origin. Sixteen taxa of fusuline foraminifers and 37 taxa of smaller (non‐fusuline) foraminifers are recognized from the type section of the Shifodong Formation located in the Gengma area of the northern part of the Changning–Menglian Belt. Based on their stratigraphic distribution, three fusuline zones can be established in this section: they are, in ascending order, the Codonofusiella cf. C. kwangsiana Zone, Palaeofusulina minima Zone, and Palaeofusulina sinensis Zone. These three biozones are respectively referable to the Wuchiapingian, early Changhsingian, and late Changhsingian, of which the Wuchiapingian is first recognized in this study in the Changning–Menglian mid‐oceanic carbonates. The present study clearly demonstrates that the foraminiferal fauna in a Paleo‐Tethyan pelagic shallow‐marine environment still maintained high faunal diversity throughout the almost entire Lopingian, although the very latest Permian fauna in the upper part of the Palaeofusulina sinensis Zone of the Shifodong section records a sudden decrease in both faunal diversity and abundance. Moreover, the Shifodong faunas are comparable in diversity with those observed in circum‐Tethyan shelves such as South China. The present Paleo‐Tethyan mid‐oceanic foraminiferal faunas are definitely more diversified than coeval mid‐oceanic Panthalassan faunas, which are typically represented by those from the Kamura Limestone in a Jurassic accretionary complex of Southwest Japan. It is suggestive that the Paleo‐Tethyan mid‐oceanic buildups presumably supplied a peculiarly hospitable habitat for foraminiferal faunal development in a pelagic paleo‐equatorial condition.  相似文献   

17.
内蒙古锡林浩特I型花岗岩的时代及构造意义   总被引:1,自引:0,他引:1  
在内蒙古锡林浩特水库地区出露的花岗岩确定为I型花岗岩,具有较高的Cr、Co、Ni丰度。Ca、Al含量和N2O/K2O比值较高,Fe、Mg含量较低。微量元素蛛网图中显示出明显的Nb、Ta、P、Ti负异常。在SiO2-K2O及AFM图中,花岗质岩石投在钙碱性系列区;在构造环境判别图中,花岗质岩石样品都投在火山弧+同碰撞花岗岩区。锆石测年结果显示平均年龄为317.0±4.0Ma,属晚石炭世。这套晚石炭世岛弧花岗岩的存在,表明加里东期古亚洲洋并未完全关闭,晚石炭世时仍然存在洋壳的俯冲消减事件。从区域上看,是北侧的贺根山洋盆向南俯冲的结果。  相似文献   

18.
Granitoids in the Hida region of Japan encompass two main rock types: younger type‐1 granites and older type‐2 granites. Sensitive high mass‐resolution ion microprobe (SHRIMP) U–Pb zircon dating of older type‐2 granites collected from the Tateyama area show similar ages of 245 ± 2 Ma and 248 ± 5 Ma for two gneissose granites, while a significantly younger intrusion age of 197 ± 3 Ma was determined for the younger type‐1 granites collected from the Hayatsukigawa River which belongs to the Okumayama pluton. A felsic gneiss sample (07HI‐3) collected from the right bank of the Hayatsukigawa River yielded multiple complex ages at 330 ± 6 Ma, indicating the timing of the Hida regional tectono‐thermal events that formed the Hida gneisses; 243 ± 8 Ma, representing the timing of intrusion of the augen granite; and 220 Ma, indicating the timing of regional dextral ductile shearing that caused a repeated recrystallization of metamorphic rocks in the study area. Considering the geochronological data, the rock types and assemblages, basement, and Sr–Nd isotopic constraints, we propose that the Hida Belt separated from the Jiamushi massif, which is located in the eastern margin of the Central Asian Orogenic Belt.  相似文献   

19.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

20.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号