首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   

2.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   

3.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

4.
Along the east coast of the Andaman Islands, abundant detrital chromian spinels frequently occur in black sands at the confluence of streams meeting the Andaman Sea. The mineral chemistry of these detrital chromian spinels has been used in reconstructing the evolutionary history of the Andaman ophiolite. The chromian spinels show wide variation in compositional parameters such as Cr# [= Cr/(Cr + A1) atomic ratio] (0.13–0.91), Mg# [= Mg/(Mg + Fe2+) atomic ratio] (0.23–0.76), and TiO2 (<0.05–3.9 wt%). The YFe3+[= 100Fe3+/(Cr + A1 + Fe3+) atomic ratio] is remarkably low (usually <10 except for south Andaman). The ranges of chemical composition of chromian spinels are different in each locality. The spinel compositions show very depleted signatures over the entire island, which suggests that all massifs in the Andaman ophiolite were affected under island‐arc conditions. Although the degree of depletion varies in different parts of the island, a directional change in composition of the detrital chromian spinels from south to north is evident. Towards the north the detrital chromian spinels point to less‐depleted source rocks in contrast to relatively more depleted towards the south. The possibilities to explain this directional change are critically discussed in the context of the evolution of Andaman ophiolite.  相似文献   

5.
Fawzy F.  Abu El Ela  Esam S.  Farahat 《Island Arc》2010,19(1):151-164
Podiform chromitites hosted in serpentinites (after harzburgite and dunite) and talc‐carbonate rocks from the Abu Meriewa–Hagar Dungash district (MHD), Eastern Desert of Egypt, together with metagabbros, pillow metavolcanics, and metasediments, form an ophiolitic mélange formed during the Neoproterozoic Pan‐African Orogeny. The chromitites show massive, disseminated, and nodular textures. Chromite cores in chromitites have high and restricted ranges of Cr# (0.65–0.75) and Mg# (0.64–0.83), implying primary compositions not affected by metamorphism. Therefore, they are used as reliable indicators of parent magma composition and tectonic affinities of these highly metamorphosed rocks. On the contrary, the altered rims are high‐Cr, low‐Fe3+ spinel (rather than ferritchromit) enriched in Cr, Fe, and Mn, and depleted in Al and Mg (Cr# = 0.75–0.97, Mg# = 0.29–0.79), due to equilibration with interstitial silicates during regional metamorphism up to transitional greenschist–amphibolite facies at about 500–550°C. The primary chromite compositions suggest derivation from a high‐Mg tholeiitic, to possibly boninitic, parental magma in a supra‐subduction zone (arc–marginal basin) environment, similar to the spatially associated metavolcanic rocks. The MHD chromitites are most probably formed by melt–rock interaction mechanisms. The high Cr# of the investigated chromites suggests high degrees of partial melting of a depleted harzburgite source by interaction with primitive basaltic melt of deeper origin followed by mixing. Such Cr‐rich chromites are common in chromitites from the Eastern Desert of Egypt, implying broad thermal anomalies, possibly linked to an important geodynamic feature of the Arabian–Nubian Shield (ANS) evolution. This could revive interest in models that involve asthenospheric uprise, related to plume interaction or most probably due to oblique convergence of arc terranes during early evolution of the ANS.  相似文献   

6.
Eric S.  Andal  Shoji  Arai  Graciano P.  Yumul Jr 《Island Arc》2005,14(3):272-294
Abstract   The Isabela ophiolite shows a complete ophiolite sequence exposed along the eastern coast of northern Luzon, the Philippines. It forms the Cretaceous basement complex for the northeastern Luzon block. This ophiolite is located at the northern end of a trail of ophiolites and ophiolitic bodies along the eastern margin of the Philippine Mobile Belt. This paper presents new findings regarding the nature and characteristics of the Isabela ophiolite. Peridotites from the Isabela ophiolite are relatively fresh and are composed of spinel lherzolites, clinopyroxene-rich harzburgites, depleted harzburgites and dunites. The modal composition, especially the pyroxene content, defines a northward depletion trend from fertile lherzolite to clinopyroxene-rich harzburgites and more refractory harzburgites. Variation in modal composition is accompanied by petrographic textural variations. The chromium number of spinel, an indicator of the degree of partial melting, concurs with petrographic observations. Furthermore, the Isabela ophiolite peridotites are similar in spinel and olivine major-element geochemistry and clinopyroxene rare earth-element composition to abyssal peridotites from modern mid-oceanic ridges. Petrological and mineral compositions suggest that the Isabela ophiolite is a transitional ophiolite subtype, with the fertile lherzolites representing lower sections of the mantle column that are usually absent in most ophiolitic massifs. The occurrence of the fertile peridotite presents a rare opportunity to document the lower sections of the ophiolitic mantle. The variability in composition of the peridotites in one continuous mantle section may also represent a good analogy of the melting column in the present-day mid-oceanic ridges.  相似文献   

7.
Possible sub-arc origin of podiform chromitites   总被引:6,自引:1,他引:6  
Abstract The sub-arc mantle condition possibly favors the formation of podiform chromitites. The Cr/(Cr + Al) atomic ratio (= Cr#) of their chromian spinel frequently is higher than 0.7, which is comparable with the range for arc-related primitive magmas. This almost excludes the possibility of their sub-oceanic origin, because both oceanic peridotites and MORB have chromian spinel with the Cr# < 0.6. Precipitation of chromitite and associated dunite enhances a relative depletion of high-field strength elements (HFSE) to large-ion lithophile elements (LILE), one of chemical characteristics of arc magmas, for the involved magma. This cannot alter completely, however, the MORB to the arc-type magma, especially for Ti and Zr. The presence of chromitite xenoliths, similar both in texture and in chemistry to podiform chromitites of some ophiolitic complexes, in some Cenozoic alkali basalts from the southwest Japan arc indicates directly that the upper mantle beneath the Japan arcs has chromitites.  相似文献   

8.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   

9.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   

10.
Abstract In Japan and Korea, some Lower Cretaceous terrigenous clastic rocks yield detrital chromian spinels. These chromian spinels are divided into two groups: low-Ti and high-Ti. The Sanchu Group and the Yuno Formation in Japan have both groups, whereas the Nagashiba Formation in Japan and the Jinju Formation in Korea have only the low-Ti spinels. High-Ti spinels are thought to have originated in intraplate-type basalt. Low-Ti spinels (higher than 0.6 Cr#) were probably derived from peridotites, which are highly correlated with an arc setting derivation and possibly with a forearc setting derivation. Low-Ti spinels are seen in the Sanchu Group, the Nagashiba Formation and the Jinju Formation. Low-Ti spinels from the Yuno Formation are characterized by low Cr# (less than 0.6) and these chromian spinels appear to have been derived from oceanic mantle-type peridotite, including backarc. According to maps reconstructing the pre-Sea of Japan configuration of the Japanese Islands and the Korean Peninsula, the Korean Cretaceous basin was comparatively close to the Southwest Japan depositional basins. It is possible that these Lower Cretaceous systems were sediments mainly in the forearc and partly in the backarc regions. The peridotite might have infiltrated along major tectonic zones such as the Kurosegawa Tectonic Zone (= serpentinite melange zone) in which left lateral movement prevailed during the Early Cretaceous.  相似文献   

11.
The Sindong Group was deposited in the north–south trending half‐graben Nakdong Trough, southern Korean peninsula. The occurrence of detrital chromian spinels from the Jinju Formation of the Sindong Group in the Gyeongsang Basin means that the mafic to ultramafic rocks were exposed in its provenance. The chromian spinels from the Jinju Formation are characterized by extremely low TiO2 and Fe3+. Moreover, their range of Cr# is from 0.45 to 0.80 and makes a single trend with Mg#. The chemistry of chromian spinels implies that the source rocks for chromian spinels were peridotites or serpentinites, which originated in the mantle wedge. To more narrowly constrain their source rocks, the Ulsan and Andong serpentinites exposed in the Gyeongsang Basin were examined petrographically. Chromian spinels in the Andong serpentinite differ from those of the Jinju Formation and those in the Ulsan serpentinite partly resemble them. Furthermore, the Jinju chromian spinel suite is similar to the detrital chromian spinels from the Mesozoic sediments in the Circum‐Hida Tectonic zone, which includes the Nagato Tectonic zone in Southwest Japan and the Joetsu Belt in Northeast Japan. This suggests that the basement rocks, which were located along the main fault bounding the eastern edge of the Nakdong Trough, had exposures of peridotite or serpentinite. It is possible that the Nakdong Trough was directly adjacent to the Circum‐Hida Tectonic zone before the opening of the Sea of Japan (East Sea).  相似文献   

12.
Abstract Thailand comprises two continental blocks: Sibumasu and Indochina. The clastic rocks of the Triassic Mae Sariang Group are distributed in the Mae Hong Son–Mae Sariang area, north‐west Thailand, which corresponds to the central part of Sibumasu. The clastic rocks yield abundant detrital chromian spinels, indicating a source of ultramafic/mafic rocks. The chemistry of the detrital chromian spinels suggests that they were derived from three different rock types: ocean‐floor peridotite, chromitite and intraplate basalt, and that ophiolitic rocks were exposed in the area, where there are no outcrops of them at present. Exposition of an ophiolitic complex denotes a suture zone or other tectonic boundary. The discovery of chromian spinels suggests that the Gondwana–Tethys divide is located along the Mae Yuam Fault zone. Both paleontological and tectonic aspects support this conclusion.  相似文献   

13.
Characteristic geochemical features of the ophiolite suite from the Bay of Islands Complex have been determined by major and trace element analyses of 13 rocks. Based on elements, such as rare earth elements (REE), whose abundances are relatively immobile during alteration and metamorphism, we find that (1) the pillow lavas and diabases are relatively depleted in light REE similar to most tholeiites occurring along spreading oceanic ridges, in back-arc basins and comprising the early phases of volcanism in island arcs; (2) the gabbros, composed of cumulate plagioclase and olivine with poikilitic clinopyroxene, have REE contents consistent with formation as cumulates precipitated from magmas represented by the overlying pillow lavas and diabases; (3) as in most harzburgites from ophiolites, the Bay of Islands harzburgite and dunite have relative REE abundances inconsistent with a genetic relationship to the overlying basic rocks — this inconsistency may be primary or it may result from late-stage alteration, contamination and/or metamorphism; (4) some Bay of Islands lherzolites have major and trace element abundances expected in the mantle source of the overlying basic rocks. Overall, the geochemical features of this Bay of Islands ophiolite suite are similar to those from Troodos and Vourinos, but these data are not sufficient to distinguish between different tectonic environments such as deep ocean ridge, small ocean basin or young island arc.  相似文献   

14.
Abstract In this paper, a summary of the tectonic history of the Mirdita ophiolitic nappe, northern Albania, is proposed by geological and structural data. The Mirdita ophiolitic nappe includes a subophiolite mélange, the Rubik complex, overlain by two ophiolite units, referred to as the Western and Eastern units. Its history started in the Early Triassic with a rifting stage followed by a Middle to Late Triassic oceanic opening between the Adria and Eurasia continental margins. Subsequently, in Early Jurassic time, the oceanic basin was affected by convergence with the development of a subduction zone. The existence of this subduction zone is provided by the occurrence of the supra‐subduction‐zone‐related magmatic sequences found in both the Western and Eastern units of the Mirdita ophiolitic nappe. During the Middle Jurassic, continuous convergence resulted in the obduction of the oceanic lithosphere, in two different stages – the intraoceanic and marginal stages. The intraoceanic stage is characterized by the westward thrusting of a young and still hot section of oceanic lithosphere leading to the development of a metamorphic sole. In the Late Jurassic, the marginal stage developed by the emplacement of the ophiolitic nappe onto the continental margin. During this second stage, the emplacement of the ophiolites resulted in the development of the Rubik complex. In the Early Cretaceous, the final emplacement of the ophiolites was followed by the unconformable sedimentation of the Barremian–Senonian platform carbonate. From the Late Cretaceous to the Middle Miocene, the Mirdita ophiolitic nappe was translated westward during the progressive migration of the deformation front toward the Adria Plate. In the Middle to Late Miocene, a thinning of the whole nappe pile was achieved by extensional tectonics, while the compression was still active in the westernmost areas of the Adria Plate. On the whole, the Miocene deformations resulted in the uplift and exposition of the Mirdita ophiolites as observed today.  相似文献   

15.
Abstract The Zambales Ophiolite Complex (ZOC), Philippines, includes two geochemically distinct, ophiolitic assemblages: the high-Al chromitite-bearing Coto Block and high-Cr chromitite-bearing Acoje Block. This paper reports a comparative platinum-group element (PGE) study of these two blocks. The PGE data were obtained using Ni-sulfide fire assay preconcentration combined with inductively coupled plasma mass spectrometry (ICP-MS) measurement. Podiform chromitites in the Acoje Block have higher Cu, Ir, Ru and Rh contents than their equivalents in the Coto Block, although chromitites from both have similar Pt and Pd contents. The PGE mantle-normalized patterns of dunites from the two blocks are also different: dunites from the Coto Block are depleted in Pt, whereas those from the Acoje Block have a relatively flat pattern. The data demonstrate that Coto and Acoje Blocks have different origins in terms of their source region and partial melting processes. This study implies that the ZOC is a paired ophiolite belt formed in an island arc and back-arc basin environment.  相似文献   

16.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   

17.
The Western Mediterranean Jurassic ophiolites contain abundant volcanic rocks that resemble modern ocean floor basalts. In this paper we report analyses of rare earth elements (REE), transition elements (Ni, Co, Cr, V, Sc) and high field strength elements (Ti, P, Y, Zr, Ta, Hf) for metabasalts from representative ophiolite outcrops in the Eastern Alps, Corsica and the Northern Apennines (Liguria).The chemical characteristics of the metabasalts range from “normal” to “transitional” mid-ocean ridge basalt (MORB). Most chemical variation in the metabasalts from the different areas can be explained by low-pressure fractional crystallization, by differences in degree of partial melting, and by minor chemical heterogeneities of the source, but the “transitional” MORB characteristics of some metabasalts from Corsica (Balagne) might reflect formation from a source with different mineral and chemical composition. The estimated REE pattern of the source of the Liguria-type metabasalts corresponds to the pattern for certain Ligurian ultramafic rocks, which might therefore represent the residue from extraction of some ophiolitic lavas.While the Liguria-type ophiolitic metabasalts might represent products of a “normal”, for instance, oceanic ridge, the “transitional” metabasalts might be lavas erupted, during the early stages of opening of a small ocean basin, or along the continental margin of a larger ocean basin.  相似文献   

18.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

19.
Abstract   Abundant peridotite xenoliths have been found in pyroclasitics of Avacha (Avachinsky) volcano, the south Kamchatka arc, Russia. They are mostly refractory harzburgite with or without clinopyroxene: the Fo of olivine and Cr/(Cr + Al) atomic ratio of spinel range from 91 to 92 and from 0.5 to 0.7, respectively. They are metasomatized to various extents, and the metasomatic orthopyroxene has been formed at the expense of olivine. The metasomatic orthopyroxene, free of deformation and exsolution, is characterized by low contents of CaO and Cr2O3. The complicated way of replacement possibly indicates low viscosity of the metasomatic agent, namely hydrous fluids released from the relatively cool slab beneath the south Kamchatka arc. This is a good contrast to the north Kamchatka arc, where the slab has been hot enough to provide slab-derived melts. High content of total orthopyroxene, 40 vol% on average, in metasomatized harzburgite from Avacha suggests silica enrichment of the mantle wedge, and is equivalent to some subcratonic harzburgite. Some subcratonic harzburgites therefore could have been formed by transportation of subarc metasomatized peridotites to a deeper part of the upper mantle.  相似文献   

20.
Abstract   The geological, geochemical and mineralogical data of dismembered ophiolites of various ages and genesis occurring in accretionary piles of the Eastern Peninsulas of Kamchatka enables us to discriminate three ophiolite complexes: (i) Aptian–Cenomanian complex: a fragment of ancient oceanic crust, composed of tholeiite basalts, pelagic sediments, and gabbroic rocks, presently occurring in a single tectonic slices (Afrika complex) and in olistoplaques in Pikezh complex of the Kamchatsky Mys Peninsula and probably in the mélange of the Kronotsky Peninsula; (ii) Upper Cretaceous complex, composed of highly depleted peridotite, gabbro and plagiogranite, associated with island arc tholeiite, boninite, and high-alumina tholeiitic basalt of supra-subduction origin; and (iii) Paleocene–Early Eocene complex of intra-island arc or back-arc origin, composed of gabbros, dolerites (sheeted dykes) and basalts produced from oceanic tholeiite melts, and back-arc basin-like dolerites. Formation of the various ophiolite complexes is related to the Kronotskaya intra-oceanic volcanic arc evolution. The first ophiolite complex is a fragment of ancient Aptian–Cenomanian oceanic crust on which the Kronotskaya arc originated. Ophiolites of the supra-subduction zone affinity were formed as a result of repeated partial melting of peridotites in the mantle wedge up to the subduction zone. This is accompanied by production of tholeiite basalts and boninites in the Kamchatsky Mys segment and plagioclase-bearing tholeiites in the Kronotsky segment of the Kronotskaya paleoarc. The ophiolite complex with intra-arc and mid-oceanic ridge basalt geochemical characteristics was formed in an extension regime during the last stage of Kronotskaya volcanic arc evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号