首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity.At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899.The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field.Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989.In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”.The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.  相似文献   

2.
In July 2003 the International Association of Geodesy (IAG) established the Global Geodetic Observing System (GGOS). The GGOS is integrating the three basic components: geometry, the earth rotation and gravity. The backbone of this integration is the existing global ground network, based on the geodetic space techniques: very long baseline interferometry, satellite laser ranging, global navigation satellite systems and Doppler orbitography and radiopositioning integrated by satellite. These techniques have to operate as one global entity and in one global reference frame. The global reference frame in the GGOS is a realization of the International Terrestrial Reference System (ITRS). The ITRS is a world spatial reference system co-rotating with the Earth in its diurnal motion in the space. The IAG Subcommision for the European Reference Frame (EUREF) in 1991 recommended that the terrestrial reference system for Europe should be coincident with ITRS at the epoch t 0 = 1989.0 and fixed to the stable part of the Eurasian Plate. It was named the European Terrestrial Reference System 89 (ETRS89). On the 2nd of June 2008, the Head Office of Geodesy and Cartography in Poland commenced operating the ASG-EUPOS multifunctional precise satellite positioning system. The ASG-EUPOS network defines the European Terrestrial Reference System ETRS89 in Poland. A close connection between the ASG-EUPOS stations and 15 out of 18 Polish EUREF permanent network stations controls the realization of the ETRS89 on Polish territory. This paper is a review of the global ITRS, as well as a regional and a national geodetic reference systems ETRS89.  相似文献   

3.
《Journal of Geodynamics》2006,41(4-5):363-374
One of the main objectives of the promising and challenging IAG project GGOS (Global Geodetic Observing System) is the availability of a global and accurate Terrestrial Reference Frame for Earth Science applications, particularly Earth Rotation, Gravity Field and geophysics. With the experience gained within the activities related to the International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF), the combination method proved its efficiency to establish a global frame benefiting from the strengths of the various space geodetic techniques and, in the same time, underlining their biases and weaknesses. In this paper we focus on the limitation factors inherent to each individual technique and to the combination, such as the current status of the observing networks, distribution of the co-location sites and their quality and accuracy of the combined frame parameters. Results of some TRF and EOP simultaneous combinations using CATREF software will be used to illustrate the current achievement and to help drawing up future goals and improvements in the GGOS framework. Beyond these technical aspects, the overall visibility and acceptance of ITRS/ITRF as international standard for science and applications is also discussed.  相似文献   

4.
Terrestrial reference frame requirements within GGOS perspective   总被引:4,自引:0,他引:4  
One of the main objectives of the promising and challenging IAG project GGOS (Global Geodetic Observing System) is the availability of a global and accurate Terrestrial Reference Frame for Earth Science applications, particularly Earth Rotation, Gravity Field and geophysics. With the experience gained within the activities related to the International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF), the combination method proved its efficiency to establish a global frame benefiting from the strengths of the various space geodetic techniques and, in the same time, underlining their biases and weaknesses. In this paper we focus on the limitation factors inherent to each individual technique and to the combination, such as the current status of the observing networks, distribution of the co-location sites and their quality and accuracy of the combined frame parameters. Results of some TRF and EOP simultaneous combinations using CATREF software will be used to illustrate the current achievement and to help drawing up future goals and improvements in the GGOS framework. Beyond these technical aspects, the overall visibility and acceptance of ITRS/ITRF as international standard for science and applications is also discussed.  相似文献   

5.
In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 ?? × 3?? resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes?? formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of ±6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to be more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of ±8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.  相似文献   

6.
《Journal of Geodynamics》2010,49(3-5):305-309
A new database for absolute gravity (AG) measurements has been implemented at BGI and BKG and is operational now for storing absolute gravity data either in the form of metadata or as detailed measurement results. The database development was proposed by the IGFS (International Gravity Field Service) and is expected to have a great importance for the GGOS (Global Geodetic Observing System) initiative. This database will provide an overview about AG stations and observations and by this improve the cooperation between gravity groups and foster the combination with other geodetic observation techniques. The international community of absolute gravimeter users is asked to contribute to this database.In addition to its primary purposes, demonstration of the global site distribution and information about available observations, the database could also provide an important contribution to the Global Geodynamics Project (GGP). Precise repeated absolute gravity measurements at the superconducting gravimeter (SG) sites are necessary for the determination of SG drift parameters and can be used for checking SG instrument calibration factors. The AGrav database is capable of storing the necessary AG observations at the SG location in detail up to the “single drop level” and provides this information for the combination with SG time series. An example for a selected station is presented. It is proposed to establish an interface between the AGrav and GGP databases.  相似文献   

7.
地球重力场是表征地球内部、表面或外部各点所受地球重力作用空间的物理属性.地球重力场不仅存在着空间变化而且存在着时间变化.从空间观测,地球重力场是地球系统质量分布的结果,质量在地球系统内的传输和变化将在地球重力场的变化中反映出来.重力场的时变有长期变化、季节性变化、不规则变化和其他多尺度的变化.本文主要介绍了时变的地球重力场领域近年来的研究进展,归纳和描述了引起地球重力场时变的主要因素.  相似文献   

8.
The results of the theoretical and experimental research on the technique for refining the global Earth geopotential models such as EGM2008 in the continental regions are presented. The discussed technique is based on the high-resolution satellite data for the Earth’s surface topography which enables the allowance for the fine structure of the Earth’s gravitational field without the additional gravimetry data. The experimental studies are conducted by the example of the new GGMplus global gravity model of the Earth with a resolution about 0.5 km, which is obtained by expanding the EGM2008 model to degree 2190 with the corrections for the topograohy calculated from the SRTM data. The GGMplus and EGM2008 models are compared with the regional geoid models in 21 regions of North America, Australia, Africa, and Europe. The obtained estimates largely support the possibility of refining the global geopotential models such as EGM2008 by the procedure implemented in GGMplus, particularly in the regions with relatively high elevation difference.  相似文献   

9.
Izvestiya, Physics of the Solid Earth - Abstract—Empirical comparative study of the modern global models of the Earth’s gravity field (EGF) in the form of geopotential spherical...  相似文献   

10.
11.
In global studies investigating the Earth’s lithospheric structure, the spectral expressions for the gravimetric forward and inverse modeling of the global gravitational and crustal structure models are preferably used, because of their numerical efficiency. In regional studies, the applied numerical schemes typically utilize the expressions in spatial form. Since the gravity-gradient observations have a more localized support than the gravity measurements, the gravity-gradient data (such as products from the Gravity field and steady-state Ocean Circulation Explorer - GOCE - gravity-gradiometry satellite mission) could preferably be used in regional studies, because of reducing significantly the spatial data-coverage required for a regional inversion or interpretation. In this study, we investigate this aspect in context of a regional Moho recovery. In particular, we compare the numerical performance of solving the Vening Meinesz-Moritz’s (VMM) inverse problem of isostasy in spectral and spatial domains from the gravity and (vertical) gravity-gradient data. We demonstrate that the VMM spectral solutions from the gravity and gravity-gradient data are (almost) the same, while the VMM spatial solutions differ from the corresponding spectral solutions, especially when using the gravity-gradient data. The validation of the VMM solutions, however, reveals that the VMM spatial solution from the gravity-gradient data has a slightly better agreement with seismic models. A more detailed numerical analysis shows that the VMM spatial solution formulated for the gravity gradient is very sensitive to horizontal spatial variations of the vertical gravity gradient, especially in vicinity of the computation point. Consequently, this solution provides better results in regions with a relatively well-known crustal structure, while suppressing errors caused by crustal model uncertainties from distant zones. Based on these findings we argue that the gravity-gradient data are more suitable than the gravity data for a regional Moho recovery.  相似文献   

12.
Integrated Global Geodetic Observing System (IGGOS)—science rationale   总被引:1,自引:0,他引:1  
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

13.
We discuss how the geophysical fluids affect the Earth orientation parameters (EOP) and in particular polar motion and nutation. We show that the Earth orientation modeling is a perfect example of the integrated approach recommended by GGOS. GGOS considers the Earth system as a whole, including the solid Earth as well as the fluid components; geodesy observes and models the dynamics inside this system through the static and time-varying gravity field, the station displacements, and the Earth orientation parameters and the associated length-of-day variation, nutation and polar motion. Global-scale transfer in the Earth system and its geodetic consequences is proposed to be the central theme of GGOS. We show that the Earth orientation parameters perfectly fit this theme.  相似文献   

14.
The effective elastic thickness of the lithosphere has an important role in constraining compositional structure, geothermal gradient and tectonic forces within the lithosphere and the thickness of this layer can be used to evaluate the earthquakes’ focal depth. Hence, assessment of the elastic thickness of the lithosphere by gravitational admittance method in Iran is the main objective of this paper. Although the global geopotential models estimated from the satellite missions and surface data can portray the Earth’s gravity field in high precision and resolution, there are some debates about using them for lithosphere investigations. We used both the terrestrial data which have been provided by NCC (National Cartographic Center of Iran) and BGI (Bureau Gravimetrique International), and the satellite-derived gravity and topography which are generated by EIGEN-GL04C and ETOPO5, respectively. Finally, it is concluded that signal content of the satellite-derived data is as rich as the terrestrial one and it can be used for the determination of the lithosphere bending.  相似文献   

15.
《Journal of Geodynamics》2006,41(4-5):394-399
We discuss how the geophysical fluids affect the Earth orientation parameters (EOP) and in particular polar motion and nutation. We show that the Earth orientation modeling is a perfect example of the integrated approach recommended by GGOS. GGOS considers the Earth system as a whole, including the solid Earth as well as the fluid components; geodesy observes and models the dynamics inside this system through the static and time-varying gravity field, the station displacements, and the Earth orientation parameters and the associated length-of-day variation, nutation and polar motion. Global-scale transfer in the Earth system and its geodetic consequences is proposed to be the central theme of GGOS. We show that the Earth orientation parameters perfectly fit this theme.  相似文献   

16.
《Journal of Geodynamics》2006,41(4-5):357-362
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

17.
Studia Geophysica et Geodaetica - Global geopotential models are widely used in the remove-compute-restore technique for local gravity field modeling. In this paper, a method for regional...  相似文献   

18.
一种新的全球对流层天顶延迟模型GZTD   总被引:14,自引:3,他引:11       下载免费PDF全文
对流层延迟是GNSS导航定位主要误差源之一,主要受气象参数(如总气压、温度和水汽压等)的影响,具有变化随机性强的特点.本文利用 GGOS Atmosphere提供的2002-2009年全球天顶对流层延迟格网时间序列研究了全球对流层天顶延迟的时空变化特征.并以此为基础对全球天顶对流层延迟(Zenith Troposphere Delay, ZTD)进行建模,提出了一种基于球谐函数的全球非气象参数对流层天顶延迟改正模型--GZTD模型.实验对比结果表明考虑ZTD经纬向变化的GZTD模型内符合精度全球统计结果(bias:0.2 cm,RMS:3.7 cm)优于只考虑ZTD纬向变化的UNB3m (bias:3.4 cm,RMS:6.0 cm)、UNB4 (bias:4.7 cm,RMS:7.4 cm)、UNB3 (bias:4.0 cm,RMS:7.0 cm)和EGNOS (bias:4.5 cm,RMS:6.9 cm)等模型.使用全球385个IGS站进行外符合检验,统计结果表明GZTD模型(bias:-0.02 cm,RMS:4.24 cm)同样优于其它模型.GZTD模型具有改正效果良好、使用简单、所需参数少等优点.  相似文献   

19.
The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model.  相似文献   

20.
Several satellite-only gravity models based on the analysis of satellite-to-satellite tracking (SST) data have become available in the course of the last decade. The realization of the satellite missions CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) enabled the practical implementation of two modes of the SST principle, namely the high–low and the low–low SST. Though similar in their fundamental idea, which is the indirect observation of the gravity field based on the position of two satellites orbiting the Earth, the different architecture and geometrical layout of these techniques capture different fingerprints of the observed field. In the last few years, satellite-only gravity models based on the analysis of satellite gravity gradiometry (SGG) data became available and led to a new insight into the gravity field. The implementation of the SGG principle became possible after the launch of Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first gravitational gradiometry mission. Based on the principle of differential accelerometry, GOCE provides the gravitational gradients which can be used in gravity field retrieval as primary observations of the field at satellite altitude. In the present study, we consider some of the current satellite-only and combined gravity models based on the analysis of CHAMP, GRACE, GOCE, gravimetry and altimetry data. In order to perform a thorough analysis of the models, we present an overview of tools for their quality assessment both in an absolute and relative sense in terms of computing spectral quantities, such as correlation or smoothing coefficients per degree and per order, attempting to demonstrate possible non-isotropic features in the models. Furthermore, typical geodetic measures in computing second-order derivatives, such as degree and order variances and difference variances, have been also evaluated for the same models, using the combined model EGM2008 as reference. Apart from these standard spectral assessment quantities, a systematic spatial representation of the second derivatives at satellite altitude has been performed. The combination of the two analysis steps (spectral and spatial) permits a first detailed assessment of the models, focusing especially on the identification of characteristic interpretable bandwidths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号