首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grossular-andradite (grandite) garnets, precipitated from hydrothermal solutions is associated with contact metamorphism in the Kal-e Kafi skarn show complex oscillatory chemical zonation. These skarn garnets preserve the records of the temporal evolution of contact metasomatism. According to microscopic studies and microprobe analysis profiles, the studied garnet has two distinct parts: the intermediate (granditic) composition birefringent core that its andradite content based on microprobe analysis varies between 0.68–0.7. This part is superimposed with more andraditic composition, and the isotropic rim which its andradite content regarding microprobe analysis ranges between 0.83–0.99. Garnets in the studied sample are small (0.5–2 mm in diameter) and show complex oscillatory zoning. Electron microprobe analyses of the oscillatory zoning in grandite garnet of the Kal-e Kafi area showed a fluctuation in chemical composition. The grandite garnets normally display core with intermediate composition with oscillatory Fe-rich zones at the rim. Detailed study of oscillatory zoning in grandite garnet from Kal-e Kafi area suggests that the garnet has developed during early metasomatism involving monzonite to monzodiorite granitoid body intrusion into the Anarak schist- marble interlayers. During this metasomatic event, Al, Fe, and Si in the fluid have reacted with Ca in carbonate rocks to form grandite garnet. The first step of garnet growth has been coeval with intrusion of the Kal-e Kafi granitoid into the Anarak schist- marble interlayers. In this period of garnet growth, change in fluid composition may cause the garnet to stop growing temporarily or keep growing but in a much slower rate allowing Al to precipitate rather than Fe. The next step consists of pervasive infiltration of Fe rich fluids and Fe rich grandite garnets formation as the rim of previously formed more Al rich garnets. Oscillatory zoning in the garnet probably reflects an oscillatory change in the fluid composition which may be internally and/or externally controlled. The rare earth elements study of these garnets revealed enrichment in light REEs (LREE) with a maximum at Pr and Nd and a negative to no Eu anomaly. This pattern is resulted from the uptake of REE out of hydrothermal fluids by growing crystals of calcsilicate minerals principally andradite with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet x site.  相似文献   

2.
江西永平铜矿矽卡岩矿物特征及其地质意义   总被引:4,自引:3,他引:1  
田明君  李永刚  万浩章  张宇  高婷婷 《岩石学报》2014,30(12):3741-3758
永平铜矿含矿岩石主要为绿帘石透辉石石榴石矽卡岩,这种岩石类型是与斑岩体有关的矽卡岩铜矿的典型赋矿岩石。通过对这一主要赋矿矽卡岩的研究,我们发现石榴石生长分为两个阶段:(1)早期石榴石:主要分布在石榴石颗粒核部,XAdr=1.0,主要以钙铁榴石为主,说明早期流体中可能含有较多的铁,是在较氧化条件下形成的;(2)晚期石榴石,沿石榴石裂隙重新成核或者在靠近流体通道的早期石榴石表面生长,出现震荡环带,XAdr=0.46~0.99,为钙铁-钙铝石榴石系列。石榴石发生变化的期间也形成新的矿物,如绿帘石、萤石、方解石和石英等。共存石榴石和绿帘石矿物中存在Fe3+-Al3+之间的替代,说明流体的氧逸度、组分浓度或aFe3+/aAl3+可能发生了变化。金属矿物也可能是在这一阶段形成的。永平铜矿矽卡岩从接触带到大理岩空间上有分带现象。从岩体到围岩的变化趋势为:石榴石含量减少,颜色存在红棕色-棕色-棕绿色-黄绿色-浅黄色的变化趋势;矿石品位降低,这与石榴石中Al2O3含量的变化较一致。我们认为这种变化是含矿热液对早期矽卡岩进行再交代改造的结果,表现为石榴石和绿帘石中Fe3+-Al3+含量的变化,并将Cu等金属沉淀下来。根据矽卡岩矿物的这些特征,在矿床勘探时,可依据棕色石榴石来追踪主矿体的位置。  相似文献   

3.
Partition coefficients for the rare earth elements (REE) Ce, Sm and Tm between coexisting garnets and hydrous liquids have been determined at high pressure and temperatures (30 kbar and 1300 and 1500°C). Two synthetic systems were studied, Mg3Al2Si3O12-H2O and Ca3Al2Si3O12-H2O, in addition to a natural pyrope-bearing system.Deviations from Henry's Law behaviour occur at geologically relevant REE concentrations. At concentrations < 3 ppm Ce, < 12 ppm Sm, < 80 ppm Tm in pyrope and < 100 ppm Ce, < 250 ppm Sm, < 1000 ppm Tm in grossular (at 30 kbar and 1300°C), Dgarnet liquidREE increases as the REE concentration in the garnet decreases. At higher concentrations, DREE is constant. Dgrossular liquidREE also constant when the garnet contains less than about 2 ppm Sm or Tm. The REE concentration at which DREE becomes constant increases with increasing temperature, decreasing REE ionic radius and increasing Ca content of the garnet.Partitioning behaviour of Ce, Sm and Tm between a natural pyrope-rich garnet and hydrous liquid is analogous to that in the synthetic systems and substantiates the substitution model proposed by Harrison and Wood (1980).Values of DREEgarnet/liquid for which Henry's Law is obeyed are systematically higher for grossular than for pyrope (Dpyrope/liquid = 0.067(Ce), 0.108(Sm), 0.155(Tm) and Dgrossular/Liquid = 0.65(Ce), 0.75(Sm), 4.55(Tm).The implications of non-Henry's Law partitioning of REE for models of basalt petrogenesis involving garnet are far-ranging. Deviations from Henry's Law permit refinements to be made to calculated REE abundances once basic model parameters have been defined.  相似文献   

4.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

5.
The partitioning of La, Sm, Dy, Ho and Yb between garnet, calcic clinopyroxene, calcic amphibole and andesitic and basaltic liquids has been studied experimentally. Glasses containing one or more REE in concentrations of 500–2000 ppm were crystallized at pressures of 10–35 kbar, and temperatures of 900–1520°C. Water was added to stabilize amphibole and to allow study of partition coefficients over wide temperature ranges. Major element and REE contents of crystal rims and adjacent glass were determined by EPMA, with limits of detection for individual REE of 100–180 ppm. Measured partition coefficients, DREECryst-liq, are independent of REE concentration over the concentration ranges used.D-values show an inverse dependence on temperature, best illustrated for garnet. At a given temperature, they are almost always higher for equilibria involving andesitic liquid. Garnet shows by far the greatest range of D-values, with e.g. DLa < 0.05 and DYb ~ 44 for andesitic liquid at 940°C. DYb falls to ~ 12 at 1420°C. DSmGa-liq also correlates negatively with temperature and positively with the grossular content of garnet. Patterns of DreeCryst-Liq for calcic clinopyroxenes and amphiboles are sub-parallel, with D-values for amphibole generally higher. Both individual D-values and patterns for the crystalline phases studied are comparable with those determined for phenocryst-matrix pairs in natural dacites, andesites and basalts.D-values and patterns are interpreted in terms of the entry of REE3+ cations into mineral structures and liquids of contrasted major element compositions. The significance of the partition coefficients for models of the genesis of andesitic and Hy-normative basaltic magmas is assessed. Most magmas of these types in island arcs are unlikely to be produced by melting of garnet-bearing sources such as eclogite or garnet lherzolite.  相似文献   

6.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

7.
High-grade metamorphic rocks were used to explore oxygen isotope fractionations between pyroxene and garnet, and to investigate the effects on fractionation factors of the cation substitutions Fe3+Al?1 and Ca(Fe,Mg)?1. Recrystallized, granulite facies (725 °C) wollastonite ores from the northern Adirondack highlands contain essentially only the minerals clinopyroxene (a Di–Hd solid solution)+garnet (a Grs–Adr solid solution)±wollastonite, and exhibit a systematic dependence of measured fractionations on the Fe3+ content of calcic garnet: Δ(Cpx–CaGrt)=(0.14±0.12)+(0.78±0.20)XAdr and Δ(Wo–CaGrt)=(0.15±0.22)+(0.57±0.33)XAdr. In eclogites formed at T ≤650 °C, measured compositions of Ca-poor garnet and omphacite combined with experimental data indicate that Ca-poor, Fe-rich garnet is enriched in 18O compared to both diopside and grossular: extrapolating to 1000 K, Δ(Alm–Di)≈c. 0.2 and Δ(Alm–Grs)≈c. 0.5. Orthopyroxene and clinopyroxene from Gore Mountain, New York, show a constant fractionation that is independent of rock type, as expected if they have the same closure temperature. These data imply Δ(Opx-Cpx)≈c. 0.7 at 1000 K. Measured fractionations among Ca-poor garnet, orthopyroxene, clinopyroxene and hornblende in the Gore Mountain rocks further indicate an 18O enrichment in Ca-poor garnet over Grs (≈c. 0.5 at 1000 K). The new measurements are indistinguishable from expected equilibrium values based on experiments for the minerals enstatite, diopside, grossular, wollastonite and feldspar, but consistently indicate a significant isotope effect for the simple octahedral cation substitutions Fe3+Al?1 (Grs vs. Adr) and Ca(Fe,Mg)?1 (Ca-poor garnet vs. Grs; Opx vs. Cpx). Neither cation substitution has been directly investigated for its effect on 18O/16O fractionation with experiments in silicates. Chemical characterization of minerals is required prior to petrological interpretation of oxygen isotope trends.  相似文献   

8.
The partitioning of samarium and thulium between garnets and melts in the systems Mg3Al2-Si3O12-H2O and Ca3Al2Si3O12-H2O has been studied as a function of REE concentration in the garnets at 30 kbar pressure. Synthesis experiments of variable time under constant P, T conditions indicate that garnet initially crystallizes rapidly to produce apparent values of D Sm (D Sm=concentration of Sm in garnet/concentration of Sm in liquid) which are too large in the case of pyrope and too small in the case of grossular. As the experiment proceeds, Sm diffuses out of or into the garnet and the equilibrium value of D Sm is approached. Approximate values of diffusion coefficients for Sm in pyrope garnet obtained by this method are 6 × 10–13 cm2 s–1 at 1,300 ° C and 2 × 10–12 cm2 s–1 at 1,500 ° C, and for grossular, 8.3 × 10–12 cm2 s–1 at 1,200 ° C and 4.6 × 10–11 cm2 s–1 at 1,300 ° C. The equilibrium values of D Sm have been reversed by experiments with Sm-free pyrope and Sm-bearing glass, and with Sm-bearing grossular and Sm-free glass.Between 12 ppm and 1,000 ppm Sm in pyrope at 1,300 ° C and between 80 ppm and >2 wt.% Tm in pyrope at 1,500 ° C, partition coefficients are constant and independent of REE concentration. Above 100 ppm of Sm in garnet at 1,500 ° C, partition coefficients are independent of Sm concentration. At lower concentrations, however, D Sm is dependent upon the Sm content of the garnet. The two regions may be interpreted in terms of charge-balanced substitution of Sm3Al5O12 in the garnet at high Sm concentrations and defect equilibria involving cation vacancies at low concentrations. At very low REE concentrations (< 1 ppm Tm in grossular at 1,300 ° C) DREE garnet/liquid again becomes constant with an apparent Henry's Law value greater than that at high concentrations. This may be interpreted in terms of a large abundance of cation vacancies relative to the number of REE ions.The importance of defects in the low concentration region has been confirmed by adding other REE (at 80 ppm level) to the system Mg3Al2Si3O12-H2O at low Sm concentrations. These change D Sm in the defect region, demonstrating their role in the production of vacancies.Experiments on a natural pyropic garnet indicate that defect equilibria are of importance to REE partitioning within the concentration ranges found in nature.  相似文献   

9.
Using an excimer (KrF) laser ablation ICP-MS system, we studied the distribution of REE in garnets from metapelites and metabasites from Ivrea-Verbano (Western Alps, Italy) and from the Peña Negra Anatectic Complex (Central Iberia), finding systematic variations that correlate well with the metamorphic grade. Chondrite-normalized REE patterns of garnets from amphibolite-grade metapelites have lower-than-chondrite levels from La to Sm, a very small or no Eu anomaly, and a steep rise in the abundance of heavy REE as the atomic number increases. Metapelitic garnets from the amphibolite-granulite transition have a marked Eu negative anomaly and are enriched in MREE such that Sm is 10-15 times chondrite and the pattern is almost flat from Dy to Yb-Lu. In garnets from granulite-grade metapelites, the intensity of the Eu anomaly and the relative concentration of Nd, Sm, Gd and Tb increase, with almost flat chondrite-normalized patterns from Sm to Lu. Garnets from mafic granulites are remarkably similar to those of metapelitic garnets equilibrated at the same pressure, except for the Eu anomaly. The apparent paradox of enhanced uptake of larger REE ions with increasing pressure is attributed to the 3M2+ 2REE3++ vacancy substitution, which produces a net decrease in the dimensions of the unit-cell of garnet. Variations in REE patterns depend essentially on the pressure and have little dependence on either temperature, bulk-composition of garnet, or REE whole-rock composition, so they could represent a new approach for geobarometric studies. The best numerical parameter to express pressure-related variations of REE distribution in garnets is the Gd/Dy ratio which does not seem perceptibly affected by disequilibrium partitioning. The regression equation between GASP pressure and the average Gd/Dygarnet is P = 3.6 + 5.6 Gd/Dy. This equation seems to be reliable for garnets: (1)equilibrated within a pressure range of 4-9 kbar, (2) coexisting with modal monazite; and (3) with unit-cell dimensions under 11.46 Å.  相似文献   

10.
The crystal chemistry across the garnet series is examined, and several systematic trends are reported. The crystal structure of three different cubic phases intergrown in a birefringent near end-member andradite from Namibia was refined by the Rietveld method, space group $ Ia\bar{3}d, $ Ia 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction data. Electron microprobe results indicate three phases with distinct compositions. The sample is birefringent, indicating that it is not cubic when observed optically. The reduced χ 2 and overall R (F 2) Rietveld refinement values are 1.655 and 0.0284, respectively, so the multi-phase refinement is excellent. The composition, weight %, unit-cell parameter (Å), distances (Å), and site-occupancy factors (sofs) are as follows: phase-1, Adr99, 88.5(1)  %, a = 12.06259(1), average 〈Ca–O〉 = 2.4310, Fe–O = 2.0189(4), Si–O = 1.6490(4) Å, Ca(sof) = 0.948(1), Fe(sof) = 0.934(1), and Si(sof) = 0.940(1). For phase-2: Adr71Grs28, 7.1(1) %, a = 12.00361(5), average 〈Ca–O〉 = 2.440, Fe–O = 1.979(3), Si–O = 1.641(3) Å, Ca(sof) = 0.913(5), Fe(sof) = 0.767(4), and Si(sof) = 0.932(5). For phase-3: Grs79Adr17, 4.4(1) %, a = 11.89719(4), average 〈Ca–O〉 = 2.404, Al–O = 1.935(4), Si–O = 1.667(3) Å, Ca(sof) = 0.944(6), Al(sof) = 1.069(7), and Si(sof) = 0.887(5). The dominant phase-1 (89 %; Adr99) is nearly end-member andradite, Ca3Fe 2 3+ Si3O12, which contains no cation order in the Ca(X) or Fe(Y) sites. The intergrowth of the three cubic phases causes considerable strain in the minor phases-2 and phases-3 that arise from different structural parameters and gives rise to strain-induced birefringence. For comparison, the results for an isotropic, single-phase, grossular–andradite garnet (Grs76Adr21) are also presented. The strain in the minor phases is about 3–5 times more than the unstrained dominant phase-1, or the unstrained single-phase grossular–andradite.  相似文献   

11.
Three garnet-biotite pairs and eleven garnet-cordierite-biotite triplets from the Steinach aureole (Oberpfalz, North-East Bavaria) were analyzed using an electron probe microanalyzer.The regional metamorphic muscovite-biotite schists contain garnets strongly zoned with Mn-Ca-rich centers and Fe-rich edges, the average composition being almandine 67 — spessartine 4 — pyrope 4 — grossular (+andradite) 25.The first contact garnet that is formed in mica schists of the outermost part of the aureole is small, virtually unzoned, and has an average composition of almandine 52 — spessartine 37 — pyrope 8 — grossular (+andradite) 3. With increasing metamorphic grade, there is a consistent trend to form garnets richer in Fe ending up with a composition almandine 84.5 — spessartine 5.5 — pyrope 7.5 — grossular (+andradite) 2.5. This trend is accompanied by a general increase in grain size and modal amount of garnet. Associated cordierites and biotites also become richer in Fe with increasing grade. While the garnets in the highest grade sillimanite hornfelses are poorly zoned, the transitional andalusite-sillimanite hornfelses contain garnets with distinct but variable zonation profiles.These facts can possibly be explained by the time-temperature relationships in the thermal aureole. In a phase diagram such as the Al-Fe-Mg-Mn tetrahedron, the limiting mineral compositions of a four-phase volume or a three-phase triangle are fixed by T and P (the latter remaining effectively constant within a thermal aureole). Thus, in garnet-cordierite-biotite assemblages, garnet zonation should be controlled by temperature variation rather than by a non-equilibrium depletion process. Taking into account the experimental data of Dahl (1968), a zoned garnet from a transitional andalusite-sillimanite hornfels would reflect a temperature increase of about 40° C during its growth. A hypothetical P-X diagram is proposed to show semi-quantitatively the compositional variation of garnet-cordierite pairs with varying pressures (T constant).  相似文献   

12.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

13.
Garnets that exhibit mixed growth and diffusion zoning are used to evaluate the effect of grossular content on garnet Fe–Mg exchange reactions. These garnets from the uppermost amphibolite-facies to granulite-facies gneiss of the Wissahickon Group, southeastern Pennsylvania, show variation in grossular content (0.035<X Ca<0.14) but nearly constant Mg? (X Mg/(X Mg+X Fe) and X Mn through the interior indicating re-equilibration of garnet and matrix minerals with respect to iron, magnesium, and manganese. Mg? is not correlated with calcium content, evidence that the effect of calcium on garnet Fe–Mg exchange reactions is small or is offset by other interactions in almandine-rich garnets. In either case, the data presented here indicate that correction for calcium content of garnets in the application of garnet-biotite geothermometry to high-grade metapelites is unnecessary and may lead to an overestimate of peak temperature.  相似文献   

14.
We present new high temperature elasticity data on two grossular garnet specimens. One specimen is single-crystal, of nearly endmember grossular, the other is polycrystalline with about 22% molar andradite. Our data extend the high temperature regime for which any garnet elasticity data are available from 1000 to 1350 K and the compositional range of temperature data to near endmember grossular. We also present new data on the thermal expansivity of calcium-rich garnet. We find virtually no discernable differences in the temperatureT derivatives at ambient conditions of the isotropic bulkK S and shearμ moduli when comparing our results between these two specimens. These calcium-rich garnets have the lowest values of ¦(?K S /?T) P ¦ = (1.47,1.49) x 10-2GPa/K, and among the highest values of ¦(?μ/?T) P ¦ = 1.25 x 10-2GPa/K, when compared with other garnets. Small, but measurable, nonlinear temperature dependences of most of the elastic moduli are observed. Several dimensionless parameters are computed with the new data and used to illustrate the effects of different assumptions on elastic equations of state extra-polated to high temperatures. We discuss how dimensionless parameters and other systematic considerations can be useful in estimating the temperature dependence of some properties of garnet phases for which temperature data are not yet available. While we believe it is premature to quantitatively predict the temperature variation ofK S andμ for majorite garnets, our results have bearing on the amount of diopside required to explain the shear velocity gradients in Earth's transition zone.  相似文献   

15.
Major-, minor-, and trace-element zoning have been measuredin garnets from four samples of differing bulk composition fromthe east flank of the Shelburne Falls Dome, western Massachusetts,using ion and electron microprobes. The samples are differentiallyretrograded, so traditional techniques of rim geothermometryand geobarometry and P-T path analysis yield equivocal results. Trace-element abundances in garnets vary with those of majorelements, particularly calcium. Garnets exhibit several typesof Ca zoning, each accompanied by a distinct mode of trace-clementzoning. Garnets from low-Ca pelites in the Goshen Formationdecrease to low Ca abundances near their rims. This featureis coupled with a decrease in Na/Si and Ti/Si. The outermostfew microns of these garnets show a depletion in Sc/Si and anenrichment in Mn/Si, Y/Si, and rare earth element (REE) abundancescompared with the garnet core. These variations are ascribedto changes in intensive parameters during garnet growth/re-equilibration,probably a decrease in pressure (< 1 kb) accompanied by asmall temperature increase, which led to a decrease in XgrossularMuch of the variation in trace-element content may reflect crystal-chemicaleffects. In contrast, cores of garnets from intermediate-Capelites in the Waits River Formation initially display decreasesin grossular content, followed by Ca increases towards theirrims. The decrease in grossular content correlates with strongincreases in Y/Si, Zr/Si, and REE contents. The Ca ‘inflection’observed in these garnets coincides with the last appearanceof clinozoisite inclusions in garnet. Clinozoisite-compatibleelements (Y, Zr, and REE) may be released during breakdown ofclinozoisite in an internal metasomatic process, producing someof the trace-element enrichments. Garnets from clinozoisite-bearingpelites in the Waits River Formation exhibit zoning profileswith an increase in Ca towards the rim. An abrupt enrichmentin grossular content (Xgrossular = 0.06) occurs near garnetcores in these high-CaO, low-SiO2, high-FeO samples. The Caincrease accompanies small decreases in Li/Si and Na/Si, smallincreases in Ti/Si and V/Si, and large decreases in Y/Si, Zr/Si,and REE abundance. The large trace-element variations are probablydue to an interval of growth of clinozoisite accessory mineralsseparating two distinct garnet-growth events. This garnet alsoshows Co and Cr increases toward the rim, probably as a resultof breakdown of magnetite. Proton-probe microanalysis of minerals in these calc-pelitesshows strong affinities of specific trace elements for certainminerals: Y in garnet, Ga and Rb in biotite, Zn and Ga in staurolite,Rb and Sr in muscovite, Sr and Pb in plagioclase, and Nb inilmenite. Trace-element zoning is shown to be a useful monitor of reactionhistories and possibly P-T paths during garnet growth.  相似文献   

16.
Ferric iron in mantle-derived garnets   总被引:4,自引:0,他引:4  
The oxidation state of a mantle assemblage may be defined by heterogeneous reactions between oxygen and iron-bearing minerals. In spinel lherzolites, the presence of Fe3+ in spinel allows use of the assemblage olivine-orthopyroxene-spinel to define f O 2 at fixed T and P. As a first step towards establishing an analogous reaction for garnet lherzolites, garnets from mantle-derived xenoliths from South Africa and the USSR have been analyzed with 57Fe Mössbauer spectroscopy at 298 and 77K to determine Fe3+/Fe2+ and the coordination state of iron. Garnets from South African alkremites (pyrope+Mg-spinel) and eclogites, as well as garnet-spinel and low-temperature garnet lherzolites from both South Afica and the USSR, have Fe3+/Fe<0.07. In contrast, garnets from high-temperature garnet lherzolites from within the Kaapvaal craton of South Africa have Fe3+/Fe>0.10. Ferric iron is octahedrally coordinated, and ferrous iron is present in the dodecahedral site in all samples. The occurrence of significant Fe3+ in these garnets necessitates caution in the use of geothermometers and geobarometers that are applied to mantle samples. For example, the presence of 12% of the Fe as Fe3+ in garnets can increase temperatures calculated from existing Fe/Mg geothermometers by>200°C. The concomitant increase in pressures calculated from geobarometers that use the Al content in orthopyroxene coexisting with garnet are 10–15 kbar. Results of calculations based on heterogeneous equilibria between garnet, olivine, and pyroxene are consistent with the derivation of the peridotite samples from source regions that are relatively oxidized, between the f O 2 of the FMQ (quartz-fayalite-magnetite) buffer and that of the WM buffer. No samples yield values of f O 2 as reduced as IW (iron-wüstite buffer).  相似文献   

17.
Garnet in silicic liquids and its possible use as a P-T indicator   总被引:1,自引:0,他引:1  
Melting experiments on a model pelitic composition yield low-spessartine garnet as an important residual phase at pressures above 7 kb. The K D values for distribution of iron and magnesium between coexisting garnet and liquid in the pelitic composition are mainly sensitive to temperature, but also have a small pressure dependence. At temperatures above 950 ° C garnet has a higher value than coexisting liquid, but below 950 ° C the garnet value is lower than that of the coexisting liquid. Thus at temperatures below 950 ° C silicic magmas may fractionate garnet and produce more magnesian derivative liquids.Reconnaissance experiments with added MnO content in the model pelite demonstrate that spessartine-rich garnets are stable in silicic liquids to pressures as low as 3 kb. The MnO and CaO contents of the experimentally crystallized garnets show an antipathetic relation. Also, the grossular content of near-liquidus garnets crystallizing from a range of compositions increases with increasing pressure. The spessartine and grossular contents of most natural garnets in eastern Australian granitic rocks suggest that these garnets formed at pressures greater than 5 kb. Increased spessartine content allows crystallization of garnet in equilibrium with a silicic magma well within the pressure limit of stability of cordierite, provided the garnet contains 10 mol.% spessartine. Thus the depth range over which garnet and cordierite may coexist in a silicic melt is broadened, subject to the availability of MnO. The effect of increased Mn content on the low-pressure stability limit of garnet may also explain the lack of resorption of some garnets in granitic magmas, as these magmas rise to shallower levels. These euhedral garnets characteristically show zoning from an Mn-poor core (typically <4 % MnO) to an Mn-richer rim (typically >4 % MnO) and may reflect continued growth of the garnet in a low pressure regime, stabilized by Mn concentrated in the residual liquid fractions of the crystallizing magma.  相似文献   

18.
Garnetiferous basic granulites occur, as parts of hornblende-pyroxene- and pyroxene granulites, in a Precambrian terrain around Saltora. The chemistry of the garnetiferous basic granulites is broadly similar to that of the hornblende-pyroxene granulites, their immediate precursors, but in detail they have distinctly higher Fe/Mg ratios. The compositions of the major mafic silicates of the garnetiferous varieties do not reflect higher pressures of formation: the Jd/Ts ratios in calcic pyroxenes are similar to those from the non-garnetiferous varieties, and the pyrope contents of garnets are low. Exchange equilibrium in respect of major elements was established among the mafic silicates in spite of garnets being late overprints. The orthopyroxene — calcic pyroxene pairs from the garnetiferous granulites show lower values of K D(Mg-Fe) opx-cpx than those from the non-garnetiferous granulites, pointing to lower temperature of equilibration. The K D(Mg-Fe) opx-hbl K D(Mg-Fe) cpx-hbl relations show that the more magnesian triads equilibrated at lower temperatures; viewed against experimental data regarding the effect of Mg/Fe ratios on the appearance of garnets in basic rocks, formation of garnets by cooling is strongly indicated. Several intergrowth textures, especially garnet-ilmenite and garnet-quartz (±albite) symplectites, and modal relations argue in favour of composite reactions of the type hornblende+ quartz-→calcic pyroxene+garnet+albite+H2O, which couple hornblende breakdown reactions with orthopyroxene+anorthite→garnet reactions. The approximate range of pressure and temperature conditions, estimated from experimental data, are 6–8.5 kb and 750–830° C. Since garnets formed by cooling in iron-rich granulites, the garnetiferous granulites do not represent higher pressure subfacies of the granulite facies.  相似文献   

19.
Activity-composition relationships for pyrope-grossular garnet   总被引:1,自引:0,他引:1  
Activity coefficients () for grossular in pyrope-grossular garnet have been determined experimentally using the divariant assemblage garnet-anorthite-sillimanite (kyanite)-quartz. Values of for garnets with 10–12 mole % grossular have been obtained at 1000 °, 1100 °, 1200 ° and 1300 ° C at pressures between 15 and 21 Kb. The data are consistent with a symmetrical regular solid model for grossular-pyrope solid solutions. The interaction parameter (W) increases linearly with decreasing temperature and is given by W = 7460-4.3 T cals (T in °K). A solvus in the pyrope-grossular solid solution is predicted with a temperature of critical mixing of 629°C±90 ° C.  相似文献   

20.
Activity-composition relationships of Ca3Al2Si3O12 (grs) in ternary Ca-Mg-Fe garnets of various compositions have been determined by reversed displaced equilibrium experiments at 1000° C and 900° C and pressures of 8 to 17 kbar. The mixing of grs in garnet is nearly ideal at 30 mol% grs, with positive deviations from ideality at lower grs contents. Models of garnet mixing currently in the literature do not predict this trend. Analysis of the present reversals, in conjunction with a garnet mixing model based solely on calorimetry measurements on the binary joins, indicates that a ternary interaction constant for a ternary asymmetric Margules model (Wohl 1953) cannot be constrained. Apparently, some aspects of the garnet binary joins are still not well-known. An alternative asymmetric empirical model, based on analysis of pseudobinary joins of constant Mg/Mg + Fe(Mg #), reproduces the data well and is able to predict grs activity coefficients for garnets with grs contents between 3 and 40 mol% and Mg numbers between 0 and 0.60. The grossular activity coefficient, grs, is given by:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号