首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

2.
The San Juan Basin natural gas field, located in northwestern New Mexico and southwestern Colorado in the USA, is a case-type coalbed methane system. Groundwater is thought to play a key role in both biogenic methane generation and the CO2 sequestration potential of coalbed systems. We show here how noble gases can be used to construct a physical model that describes the interaction between the groundwater system and the produced gas. We collected 28 gas samples from producing wells in the artesian overpressured high production region of the basin together with 8 gas samples from the underpressured low production zone as a control. Stable isotope and major species determination clearly characterize the gas in the high production region as dominantly biogenic in origin, and the underpressured low producing region as having a significant admix of thermogenic coal gas. 3He/4He ratios increase from 0.0836Ra at the basin margin to 0.318Ra towards the center, indicating a clear but small mantle He signature in all gases. Coherent fractionation of water-derived 20Ne/36Ar and crustal 4He/40Ar* are explained by a simple Rayleigh fractionation model of open system groundwater degassing. Low 20Ne concentrations compared to the model predicted values are accounted for by dilution of the groundwater-associated gas by desorbed coalbed methane. This Rayleigh fractionation and dilution model together with the gas production history allows us to quantify the amount of water involved in gas production at each well. The quantified water volumes in both underpressured and overpressured zones range from 1.7 × 103 m3 to 4.2 × 105 m3, with no clear distinction between over- and underpressured production zones. These results conclusively show that the volume of groundwater seen by coal does not play a role in determining the volume of methane produced by secondary biodegradation of these coalbeds. There is no requirement of continuous groundwater flow for renewing the microbes or nutrient components. We furthermore observe strong mass related isotopic fractionation of 20Ne/22Ne and 38Ar/36Ar isotopic ratios. This can be explained by a noble gas concentration gradient in the groundwater during gas production, which causes diffusive partial re-equilibration of the noble gas isotopes. It is important for the study of other systems in which extensive groundwater degassing may have occurred to recognize that severe isotopic fractionation of air-derived noble gases can occur when such concentration gradients are established during gas production. Excess air-derived Xe and Kr in our samples are shown to be related to the diluting coalbed methane and can only be accounted for if Xe and Kr are preferentially and volumetrically trapped within the coal matrix and released during biodegradation to form CH4.  相似文献   

3.
To establish the increase in temperature and the time span of the transition between the Late Glacial Maximum (LGM) and the Holocene, the noble gas content, 18O, 2H, 13C δ values, 3H and 14C activity and chemistry were studied in a groundwater flow system in Quaternary sediments in Hungary. The study area is a sub-basin of the Pannonian Basin, where the C isotope ratios are not influenced by carbonate reactions along the flow path, because the only water-rock interaction is ion exchange. The δ18O and δ2H values indicate a cold infiltration period, followed by warming, and, finally, warm temperature conditions. The noble gas data show that the average infiltration temperature was 3.3 °C in the cold, 12.9 °C in the warm, and intermediate in the transitional stage. Using the noble gas temperatures, geochemical batch modelling was performed to simulate the chemical processes. Based on the geochemical model, δ13C and 14C0 (initial radiocarbon activity) in the recharging water were calculated. Transport modelling was used to simulate the distribution of chemical components, δ18O, δ2H and 14C0, along the flow path. It was found that the main processes determining the chemical composition of the groundwater were dissolution/precipitation of calcite and dolomite during infiltration near the surface, and ion exchange along the flow path. In the recharge area the δ13C and 14C0 were controlled by dissolution and precipitation of carbonate minerals, C speciation, and fractionation processes. All these processes were influenced by the recharge temperature. NGTs calculated from the dissolved noble gas concentrations showed an average of 3.3 °C for cold, and 12.9 °C for warm infiltration, i.e. for the LGM and for the Holocene. The temperature difference was thus 9.1 ± 0.8 °C, which is one of the largest degree of warming detected by noble gases so far. The alkalinity indicates that carbonate reactions were unimportant along the flow path. Owing to the temperature dependence of the equilibrium constants, temperature conditions during infiltration have to be taken into consideration in radiocarbon age calculation. Dispersive transport along the flow path modified the chemical and isotopic composition of infiltrated water. The contribution of the old pore water, which was free of the 14C isotope, resulted in uncertainties in radiocarbon age determination. It was concluded that determination of the radiocarbon age or mean residence time requires detailed knowledge of the hydraulic conditions of groundwater.  相似文献   

4.
In order to asses the importance of carbonatitic liquids in transporting noble gases in the mantle, the solubilities of He and Ar in carbonatitic liquids were estimated from analyses of calcium-potassium carbonate glasses that had been synthesized at 1 bar and temperatures between 850 and 950 °C under He or Ar enriched atmospheres. Despite poor reproducibility related to difficulties synthesizing carbonatite glass, we have been able to estimate He and Ar solubilities in carbonatite liquids to be 1 × 10−8 and 2 × 10−9 mol g−1 at 1 bar respectively (with ?50% uncertainty). Despite the significant uncertainties on these estimates, it is clear that the noble gases are not massively soluble in carbonatite liquids (within error, these solubilities are identical to their equivalent solubilities in tholeiitic melts). Assuming the results of these low pressure experiments can be applied to mantle conditions, it seems unlikely that carbonatite metasomatism per se transports noble gases within the mantle. It is nevertheless possible that partitioning of lithophile trace elements (including the important radioelements, U, K and Th) and noble gases between a carbonatitic melt and a silicate melt could effectively decouple lithophile and noble gas isotope systematics because the carbonatitic melt expressedly does not transport noble gases, yet is known to efficiently transport incompatible trace elements.  相似文献   

5.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   

6.
Data are presented on the molecular composition of drill-mud gas from the lower sedimentary section (1800–3987 m) of the SAFOD (San Andreas Fault Observatory at Depth) Main Hole measured on-line during drilling, as well as C and H isotope data from off-line mud gas samples. Hydrocarbons, H2 and CO2 are the most abundant non-atmospheric gases in drill-mud when drilling seismogenic zones. Gas influx into the well at depth is related to the lithology and permeability of the drilled strata: larger formation gas influx was detected when drilling through organic-rich shales and permeable sandstones. The SAF (San Andreas Fault), encountered between approximately 3100 m and 3450 m borehole depth, is generally low in gas, but is encompassed by two gas-rich zones (2700–2900 m and below 3550 m) at the fault margins with enhanced 222Rn activities and distinct gas compositions. Within the fault, two interstratified gas-rich lenses (3150–3200 m and 3310–3340 m) consist of CO2 and hydrocarbons (upper zone), but almost exclusively of hydrocarbons (lower zone).  相似文献   

7.
Dissolved noble gas concentrations were measured in high salinity (270 g/L) Ca(Na)-Cl groundwaters from the Con Mine, Yellowknife, Canada in an effort to discriminate between two possible origins, as either a brine generated by evaporative enrichment in a Paleozoic inland sea, or marine water concentrated by freezing during glacial times. Major ion and isotope geochemistry indicate that brines from the deepest level remain relatively undisturbed by mixing with modern water introduced by mining. Mixing calculations are used to quantify fractions of brine, glacial meltwater and modern water. From this, noble gas concentrations were corrected for excess air with Ne and normalized to 100% brine solution. Over-pressuring of helium and argon in the brine provide age constraints based on the accumulation of geogenic 4He and 40Ar. Radiogenic age calculations together with the local geological history suggest brine emplacement during early Palaeozoic time, likely during the Devonian when evaporitic inland seas existed in this region. The concentrations of the atmospherically derived noble gases in the brine fraction (Kr = 1.4E-8, Xe = 8.5E-10 ccSTP/ccH2O) are close to atmospheric equilibrium for brine at 25 °C (Kr = 7.3E-9, Xe = 8.0E-10 ccSTP/ccH2O), but are far lower than would be expected for closed-system concentration of seawater by freezing (Kr = 2.8E-6, Xe = 4.2E-7 ccSTP/ccH2O). Thus, despite the complicated mixing history of the brine, the atmospheric and geogenic noble gases provide strong evidence for an origin as air-equilibrated brine from evaporated Paleozoic seawater, which infiltrated via density displacement through existing fractures and faults into the Canadian Shield.  相似文献   

8.
Noble gas measurements were performed for nine aubrites: Bishopville, Cumberland Falls, Mayo Belwa, Mount Egerton, Norton County, Peña Blanca Spring, Shallowater, ALHA 78113 and LAP 02233. These data clarify the origins and histories, particularly cosmic-ray exposure and regolith histories, of the aubrites and their parent body(ies). Accurate cosmic-ray exposure ages were obtained using the 81Kr-Kr method for three meteorites: 52 ± 3, 49 ± 10 and 117 ± 14 Ma for Bishopville, Cumberland Falls and Mayo Belwa, respectively. Mayo Belwa shows the longest cosmic-ray exposure age determined by the 81Kr-Kr method so far, close to the age of 121 Ma for Norton County. These are the longest ages among stony meteorites. Distribution of cosmic-ray exposure ages of aubrites implies 4-9 break-up events (except anomalous aubrites) on the parent body. Six aubrites show “exposure at the surface” on their parent body(ies): (i) neutron capture 36Ar, 80Kr, 82Kr and/or 128Xe probably produced on the respective parent body (Bishopville, Cumberland Falls, Mayo Belwa, Peña Blanca Spring, Shallowater and ALHA 78113); and/or (ii) chondritic trapped noble gases, which were likely released from chondritic inclusions preserved in the aubrite hosts (Cumberland Falls, Peña Blanca Spring and ALHA 78113). The concentrations of 128Xe from neutron capture on 127I vary among four measured specimens of Cumberland Falls (0.5-76 × 10−14 cm3STP/g), but are correlated with those of radiogenic 129Xe, implying that the concentrations of (128Xe)n and (129Xe)rad reflect variable abundances of iodine among specimens. The ratios of (128Xe)n/(129Xe)rad obtained in this work are different for Mayo Belwa (0.045), Cumberland Falls (0.015) and Shallowater (0.001), meaning that neutron fluences, radiogenic 129Xe retention ages, or both, are different among these aubrites. Shallowater contains abundant trapped Ar, Kr and Xe (2.2 × 10−7, 9.4 × 10−10 and 2.8 × 10−10 cm3STP/g, respectively) as reported previously (Busemann and Eugster, 2002). Isotopic compositions of Kr and Xe in Shallowater are consistent with those of Q (a primordial noble gas component trapped in chondrites). The Ar/Kr/Xe compositions are somewhat fractionated from Q, favoring lighter elements. Because of the unbrecciated nature of Shallowater, Q-like noble gases are considered to be primordial in origin. Fission Xe is found in Cumberland Falls, Mayo Belwa, Peña Blanca Spring, ALHA 78113 and LAP 02233. The majority of fission Xe is most likely 244Pu-derived, and about 10-20% seems to be 238U-derived at 136Xe. The observed (136Xe)Pu corresponds to 0.019-0.16 ppb of 244Pu, from which the 244Pu/U ratios are calculated as 0.002-0.009. These ratios resemble those of chondrites and other achondrites like eucrites, suggesting that no thermal resetting of the Pu-Xe system occurred after ∼4.5 Ga ago. We also determined oxygen isotopic compositions for four aubrites with chondritic noble gases and a new aubrite LAP 02233. In spite of their chondritic noble gas signatures, oxygen with chondritic isotopic compositions was found only in a specimen of Cumberland Falls (Δ17O of ∼0.3‰). The other four aubrites and the other two measured specimens of Cumberland Falls are concurrent with the typical range for aubrites.  相似文献   

9.
We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and 84,86Kr and 129,132Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: 3He/4He: (4.64 ± 0.09) × 10−4, 20Ne/22Ne: 13.78 ± 0.03, 21Ne/22Ne: 0.0329 ± 0.0001, 36Ar/38Ar 5.47 ± 0.01. The elemental composition is: 4He/20Ne: 656 ± 5, and 20Ne/36Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: 86Kr/84Kr: 0.302 ± 0.003, 129Xe/132Xe: 1.05 ± 0.02, 36Ar/84Kr 2390 ± 150, and 84Kr/132Xe 9.5 ± 1.0. The 3He/4He and the 4He/20Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (∼100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation.  相似文献   

10.
Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed of CO2 (>90 vol.%), contains appreciable quantities of H2S (0.35–6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out using an accumulation chamber. The viscous gas flux of some important discrete emissions has been evaluated and the CO2 and H2S air concentration measured by portable devices and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15–159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.  相似文献   

11.
The Hugoton-Panhandle giant gas field, located across SW Kansas and the Texas and Oklahoma panhandles in the USA, is the case type example of high nitrogen concentrations in a natural gas being linked with high helium concentrations. We collected 31 samples from producing wells in a north-south traverse of the 350-km-long field. The samples reflect the previously observed north-south change in 4He/N2, with values changing from 0.020 to 0.049 respectively. 3He/4He, 21Ne/22Ne, and 40Ar/36Ar vary between 0.14-0.25 Ra, 0.0373-0.0508, and 818-1156 respectively, and are caused by quantifiable contributions from mantle, crustal, and atmosphere-derived sources. The atmosphere-derived 20Ne/36Ar ratios are indistinguishable from groundwater values. The crustal 4He/21Ne* and 4He/40Ar* ratios show a 60% excess of 4He compared to predicted production ratios in the crust and are typical of noble gases released from the shallow crust. The mantle 3He/N2 and groundwater-recharge 36Ar/N2 ratios enable us to rule out significant magmatic or atmosphere contributions to the gas field N2, which is dominantly crustal in origin.Correlated 20Ne/N2 and 4He/N2 shows mixing between two distinct crustal N2 components. One N2 component (N2*) is associated with the crustal 4He and groundwater-derived 20Ne, and the other with no resolvable noble gas contribution. Measured δ15NN2 values vary from +2.7‰ to +9.4‰. The N2* and non-He-associated N2 endmembers are inferred to have δ15NN2 = −3‰ and +13‰ and contribute from between 25-60% and 75-40% of the nitrogen respectively. The non-He-associated nitrogen is probably derived from relatively mature organic matter in the sedimentary column. The δ15NN2* value is not compatible with a crystalline or high-grade metamorphic source and, similar to the 4He, is inferred to be from a shallow or low metamorphic-grade source rock. 4He mass balance requires a regional crustal source, its association with significant magmatic 3He pointing to a tectonically active source to the west of the Hugoton system. The volume of groundwater required to source the 20Ne in the gas field demonstrates the viability of the groundwater system in providing the collection, transport, and focusing mechanism for the 4He and N2*. The N2*/20Ne ratio shows that the N2* transport must be in the aqueous phase, and that the degassing mechanism is probably contact between the regional groundwater system and the preexisting reservoir hydrocarbon gas phase.  相似文献   

12.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

13.
This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C1, C2, C3) and CO2 yielded gas concentrations, plus δ13C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%Ro) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm3/g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ≈ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.  相似文献   

14.
Important He and Ar isotope studies on rocks and minerals, relevant to the geochemical and degassing history of the Earth, are often hampered by insufficient knowledge of the retentivity of different types of sites in minerals (inclusions, matrix) for these species, and of the relative importance of radiogenic and trapped components and possible differences in their behavior.To identify sites of noble gas isotopes, shed some light on their origin and estimate their residence times in olivine, which is a mineral considered as a good natural sampler, we investigated 2.5 Ga old ultramafic rocks from the Monche Pluton (Kola Peninsula, north-east part of the Baltic shield) using several extraction methods: crushing, fusion, slow step-wise and rapid incremental heating. Previous studies indicated that these rocks contain mainly trapped noble gases; however, to constrain the possible contribution of in-situ generated radiogenic helium, U and Th concentrations were also measured in the samples.The helium release pattern obtained by relatively fast (∼1.5 h long) incremental heating of olivine includes three distinct release peaks for helium: a low-temperature (600 °C) l-peak, a middle (800-1100 °C) m-peak and a high-temperature (∼1400 °C) h-peak. However, helium extraction from a powdered aliquot of the same olivine yields mainly the middle m-peak indicating that gases released in the l- and h-peaks occupy gas-liquid inclusions opened in the course of crushing and grinding. Moreover, slow step-wise heating (14 h) also results in a broad He release peak but in two well-separated l- and h-peaks of non-atmospheric 40Ar∗. This feature implies helium migration from l- and h-vesicles into the matrix m during long step-wise heating experiments, whereas less movable Ar remains in inclusions at even relatively high almost-magmatic temperatures.Using a simple phenomenological model envisaging the three different residence sites for noble gases, both fast- and slow-heating release patterns for 40Ar∗ and He, including those for the crushed sample, could be reproduced. The diffusion parameters inferred from the modeling of olivine (D0 = 2.4 × 10−2 cm2 s−1 and Ea = 133 kJ mol−1) are similar to those published by Shuster et al. (2003) and Blard et al. (2008). The high matrix/fluid solubility coefficient for helium, HHe ∼ 0.01, exceeds estimates reported by Trull and Kurz (1993); however, the product DHe(T) × HHe, the “permeability” (that governs He migration in vesicles + matrix composed materials), is very similar to their value. Extrapolation to the ambient temperature (0 °C) gives long and similar helium residence times in l- and h-vesicles, exceeding 1010 yrs, and even longer time scales ∼1016 yrs are obtained for the helium residence in the matrix. Therefore, at low temperatures our samples may be considered as excellent samplers of trapped volatile species, including helium.  相似文献   

15.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

16.
Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), “air” (i.e. N2 + O2 + Ar, 1–5%) and CO2 (1–5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (<37%). High CH4 content (>90%) with low CO2 (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.  相似文献   

17.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

18.
Despite their great importance in low-temperature geochemistry, diffusion coefficients of noble gas isotopes in liquid water (D) have been measured only for the major isotopes of helium, neon, krypton and xenon. Data on the diffusion coefficients of minor noble gas isotopes are essentially non-existent and so typically have been estimated by a kinetic-theory model in which D varies as the inverse square root of the isotopic mass (m): D ∝ m−0.5. To examine the validity of the kinetic-theory model, we performed molecular dynamics (MD) simulations of the diffusion of noble gases in ambient liquid water. Our simulation results agree with available experimental data on the solvation structure and diffusion coefficients of the major noble gas isotopes and reveal for the first time that the isotopic mass-dependence of all noble gas self-diffusion coefficients has the power-law form D ∝ mβ with 0 < β < 0.2. Thus our results call into serious question the widespread assumption that the ‘square-root’ model can be applied to estimate the kinetic fractionation of noble gas isotopes caused by diffusion in ambient liquid water. To illustrate the importance of this finding, we used the diffusion coefficients determined in our MD simulations to reconsider the geochemical modeling of 20Ne/22Ne and 36Ar/40Ar isotopic ratios in three representative hydrologic studies. Our new modeling results indicate that kinetic isotopic fractionation by diffusion may play a significant role in noble gas transport processes in groundwater.  相似文献   

19.
Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressures to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl type brine with minor amounts of Mg2+, K+, Sr2+ and Br).  相似文献   

20.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号