首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Reconnaissance 18O,, D, and 87Sr data for fifteen lakes in the Western Lakes Region of the Sand Hills of Nebraska indicate dynamic hydrologic systems. The rather narrow range of 87Sr from lake water (1.1 to 2.1) and groundwater (0.9 to 1.7) indicates that the groundwater is generally unradiogenic. Groundwater residence times and relatively unradiogenic volcanic ash within the dune sediments control the 87Sr values. Based on the mutual variations of 18O and D, the lakes can be divided into three groups. In Group 1, both 18O and D values increase from spring to fall. The 18O and D values in Group 2 decreased from spring to fall. Group 3 are ephemeral lakes that went dry some time during 1992. The data and isotopic modeling show that variations in the ratio of evaporation relative to groundwater inflow, local humidity conditions, and the a has substantial influence on the isotopic composition. In addition, isotopic behavior in ephemeral lakes can be rather unusual because of the changing activities of water and mineral precipitation and redissolution. The annual and interannual isotopic variability of these lakes which is reflected in the paleonvironmental indicators may be the rule rather than the exception in these types of systems.  相似文献   

2.
Oxygen isotopes and geochemistry from lake sediments are commonly used as proxies of past hydrologic and climatic conditions, but the importance of present-day hydrologic processes in controlling these proxies are sometimes not well established and understood. Here we use present-day hydrochemical data from 13 lakes in a hydrologically connected lake chain in the northern Great Plains (NGP) to investigate isotopic and solute evolution along a hydrologic gradient. The 18O and 2H of water from the chain of lakes, when plotted in 2H - 18O space, form a line with a slope of 5.9, indicating that these waters fall on an evaporation trend. However, 10 of the 13 lakes are isotopically similar (18O = –6 ± 1 VSMOW) and show no correlation with salinity (which ranges from 1 to 65). The lack of correlation implies that the isotopic composition of various source waters rather than in-lake evaporation is the main control of the 18O of the lakes. Groundwater, an important input in the water budget of this chain of lakes, has a lower 18O value (–16.7 in 1998) than that of mean annual precipitation (–11) owing to selective recharge from snow melt. For the lakes in this chain with salinity < 15, the water Mg/Ca ratios are strongly correlated with salinity, whereas Sr/Ca is not. The poor correlation between Sr/Ca and salinity results from uptake of Sr by endogenic aragonite. These new results indicate that 18O records may not be interpreted simply in term of climate in the NGP, and that local hydrology needs to be adequately investigated before a meaningful interpretation of sedimentary records can be reached.  相似文献   

3.
Subfossil chironomid assemblages were used to infer long-term water quality changes in south-central Ontario shield lakes, which are currently being impacted by anthropogenic eutrophication, acid rain, and recent climate change. Using a transfer function developed to infer average end-of-summer volume-weighted hypolimnetic oxygen (avg VWHO), a top-bottom paleolimnological approach was used to reconstruct pre-industrial (pre-1850) deepwater oxygen conditions. Comparison with present-day (top surface sediments) chironomid-based inferences of avgVWHO results suggest that hypolimnetic oxygen levels are presently similar to natural, pre-industrial (bottom sediments) levels in most lakes. Approximately half of the study lakes recorded an increase in hypolimnetic oxygen since the 19th century. Inferred changes in avgVWHO correlate well with our results from another chironomid-based oxygen model which reconstructs the Anoxic Factor (AF). When study lakes are separated according to their hydrological status (i.e., natural versus managed), lakes with a dam at their outlet and seasonally managed lake levels had significantly different changes in avgVWHO compared to lakes with natural hydrology. Lakes with a dam at their outlet generally recorded increases in avgVWHO, while natural hydrology lakes mostly recorded declines. There was no relationship between inferred changes in avgVWHO and the density of cottage and resort development along the shorelines of lakes. Changes in dissolved organic carbon (DOC) possibly related to recent climate changes may also be affecting deepwater oxygen, however patterns of change are very subtle.  相似文献   

4.
The paleohydrological evolution of several high altitude, saline lakes located in the southernmost Altiplano (El Peinado and San Francisco basins, Catamarca province, NW Argentina) was reconstructed applying sedimentological, geochemical and isotopic techniques. Several playa lakes from the San Francisco basin (26° 56 S; 68° 08 W, 3800-3900 m a.s.l.) show evidence of a recent raise in the watertable that led to modern deposition of carbonate and diatomaceous muds. A 2 m - long core from El Peinado Lake (26° 29 59 S, 68°05 32 W, 3820 m a.s.l.) consists of calcitic crusts (unit 3), overlaid by an alternation of macrophyte-rich and travertine clast- rich, laminated muds (unit 2), and topped by travertine facies (unit 1). This sedimentary sequence illustrates a paleohydrological evolution from a subaerial exposure (unit 3) to a high lake stand (unit 2), and a subsequent smaller decrease in lake level (unit 1). The 13Corganic matterrecord also reflects the lake transgression between units 3 and 2. Although there is a general positive correlation between 18Ocarbonate and salinity proxies (Na, Li and B content), the large data dispersion indicates that other factors besides evaporation effects control chemical and isotopic composition of lakewater. Consequently, the oxygen isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge can explain the enriched 13C values for primary carbonates precipitated. The carbon budget in these high altitude, saline lakes seems to be controlled by physical rather than biological processes.The Altiplano saline lakes contain records of environmental and climatic change, although accurate 14C dating of these lacustrine sediments is hindered by the scarcity of terrestrial organic material, and the large reservoir effects. Sedimentologic evidence, a 210Pb-based chronology, and a preliminary U/Th chronology indicate a very large reservoir effect in El Peinado, likely as a result of old groundwaters and large contributions of volcanic and geothermal 14C-free CO2 to the lake system. Alternative chronologies are needed to place these paleorecords in a reliable chronological framework. A period of increased water balance in the San Francisco basin ended at about 1660 ± 82 yr B.P. (calendar yr U/Th age), and would correlates with the humid phase between 3000 and 1800 yr B.P detected in other sites of the southern Altiplano. Both, 210Pb and preliminary U/Th dating favor a younger age for the paleohydrological changes in El Peinado. The arid period reflected by subaerial exposure and low lake levels in unit 3 would have ended with a large increase in effective moisture during the late 17th century. The increased lake level during deposition of unit 2 would represent the period between AD1650 - 1900, synchronous to the Little Ice Age. This chronological framework is coherent with other regional records that show an abrupt transition from more arid to more humid conditions in the early 17th century, and a change to modern conditions in the late 19th century. Although there are local differences, the Little Ice Age stands as a significant climatic event in the Andean Altiplano.  相似文献   

5.
Evaporation dominates the removal of water from Lake Tanganyika, and therefore the oxygen isotope composition of lake water has become very positive in comparison to the waters entering the lake. The surface water in Lake Tanganyika has remained relatively unchanged over the last 30 years with a seasonal range of +3.2 to +3.5 VSMOW. Water from small rivers entering the lake seems to have a 18O value between –3.5 and –4.0, based on scattered measurements. The two largest catchments emptying into the lake deliver water that has a 18O value between these two extremes. This large contrast is the basis of a model presented here that attempts to reconstruct the history of runoff intensity based on the 18O of carbonate shells from Lake Tanganyika cores. In order to use biogenic carbonates to monitor changes in the 18O of mixing-zone water, however, the oxygen isotope fractionation between water and shell carbonate must be well understood. The relatively invariant environmental conditions of the lake allow us to constrain the fractionation of both oxygen and carbon isotope ratios. Although molluskan aragonitic shell 18O values are in agreement with published mineral-water fractionations, ostracode calcite is 1.2 more positive than that of inorganic calcite precipitated under similar conditions. Ostracode shell 18O data from two cores from central Lake Tanganyika suggest that runoff decreased in the first half of this millennium and has increased in the last century. This conclusion is poorly constrained, however, and much more work needs to be done on stable isotope variation in both the waters and carbonates of Lake Tanganyika. We also compared the 13C of shells against predicted values based solely on the 13C of lake water dissolved inorganic carbon (DIC). The ostracode Mecynocypria opaca is the only ostracode or mollusk that falls within the predicted range. This suggests that M. opaca has potential for reconstructing the carbon isotope ratio of DIC in Lake Tanganyika, and may be a useful tool in the study of the history of the lakes productivity and carbon cycle.  相似文献   

6.
Canonical correspondence analysis (CCA was used to explore and identify statistically significant relationships between the distributions of planktonic diatoms and the physical and chemical properties of 50 Connecticut lakes. Six variables (pH, total nitrogen, calcium, sulfate, potassium and chlorophyll- a concentrations) were found to be significantly correlated with either or both of the first two extracted axes. The pH and calcium concentration, and to a lesser extent total nitrogen concentrations, were the most important variables controlling the distributions of planktonic diatoms in this suite of lakes. Paleolimnological inference models were developed for pH, total nitrogen (TN) and specific conductivity. Weighted averaging with (WAtol) and without (WA) tolerance downweighting, with and without bootstrap resampling techniques, and using either classical or inverse deshrinking methods were used to develop inference models for each variable. The pH and TN yielded sufficiently high 1/2 ratios and a highly significant first (constrained) axis when entered as single variables in both constrained and partially constrained CCA analyses, supporting the idea that reliable inference models could be developed for these variables. The r2 and RMSE of prediction values ranged from 0.73 to 0.86 and 0.37 to 0.6, respectively for pH, and from 0.4 to 0.64 and 59 g/l to 95 g/l, respectively for TN. Inference models for specific conductivity also yielded significant goodness-of-fit statistics. However, because specific conductivity was removed from the CCA analysis due to its high variance inflation factor and did not yield a significant relationship when entered as the sole variable in a partial constrained CCA, inference models for this variable will probably not yield any additional environmental information. The use of only planktonic diatoms in construction of inference models is discussed.  相似文献   

7.
We report oxygen isotope data from a 108-yr (1885–1993) sequence with annual laminae of bio-induced authigenic calcite in a frozen core from Baldeggersee, a small lake in Central Switzerland. These isotope results provide proxy data on the isotopic composition of past precipitation in the Baldeggersee catchment region and are quantitatively compared with instrumental climate data (i.e. mean annual air temperature and atmospheric circulation pattern indices) to evaluate climatic controls on oxygen isotopes in precipitation.Monitoring the isotope hydrology of Baldeggersee demonstrates that the oxygen isotopic composition of the lake water is controlled by the isotopic composition of local atmospheric precipitation (18Op) and that the isotopic signal of precipitation is preserved, albeit damped, in the lake calcite oxygen isotope record (18Oc). Comparison of the calcite oxygen isotope proxy for 18Op in the catchment with historical mean annual air temperature measurements from Bern, Switzerland confirms that authigenic calcite reliably records past annual air temperature in the region. This 18Oc/temperature relationship is calculated to be 0.39/°C for the period 1900–1960, based on an isotope mass-balance model for Baldeggersee. An exception is a 0.8 anomalous negative shift in calcite 18O values since the 1960s. Possible explanations for this recent 18Oc shift, as it is not related to mean annual air temperature, include changes in 18Op due to synoptic circulation patterns. In particular, the 0.8 negative shift coincides with a trend towards a more dominant North Atlantic Oscillation (NAO) index. This circulation pattern would tend to bring more isotopically more negative winter precipitation to the region and could account for the 0.8 offset in 18Oc data.  相似文献   

8.
Systematic variability occurs between the oxygen isotopic composition of lake water sampled in mid-summer 1993 and cellulose extracted from surficial sediments of a suite of lakes spanning the forest-tundra transition near Noril'sk, Russia. Some tundra and all forest-tundra lakes show greater deviation from expected cellulose-water isotopic separation than forest lakes, apparently because of greater sensitivity to 18O-depleted snowmelt contributions. Cellulose derived from aquatic plants naturally integrates fluctuations in lake water 18O, providing a signal that is inherently more representative of average thaw season lake water 18O than the measure of instantaneous 18O obtained from an individual sample of lake water. Thus, indiscriminate use of empirical cellulose-water relations derived from calibration samples could lead to erroneous assessment of paleohydrology from the oxygen-isotope stratigraphy of sediment cores from arctic lakes. However, deviation from the expected cellulose-water fractionation is a source of lake-specific hydrologic information useful for qualifying paleoenvironmental interpretations and possibly constraining non-isotopic methods that rely on surface-sediment calibrations.  相似文献   

9.
Criteria for removing training set lakes and taxa in chironomidbased inference models, due to low abundances, have largely been ad hoc. We used an anoxia inference model and a hypolimnetic oxygen model from southcentral Ontario to determine what effect subfossil head capsule abundance and taxa deletion criteria have on fossil inference statistics. Results from six training set lakes suggest that a minimum abundance of 40–50 head capsules is sufficient for use in inference models, however more diverse samples likely require more than 50 head capsules. Taxa deletion criteria substantially improved the predictive ability of inference models (lowered the root mean squared error of prediction (RMSEP)). The common practice of including taxa with only 2% abundance in at least two lakes was one of the deletion criteria that much improved inference models. Similar deletion criteria, such as 2% in at least 3 lakes and 3% in at least 1 lake, produced comparable improvements (up to 18% reduction in RMSEP).  相似文献   

10.
This study is focused on the endorheic Uyni-Coipasa Basin located in the southern Bolivian Altiplano. Stratigraphical and fossil diatom studies based on a detailed radiocarbon chrnology revealed six phases in water-level changes and paleosalinity variations. At 15,430±80 yr B.P., lacustrine conditions settled in the southern Bolivian Altiplano. A saline lake, characterized by benthic meso-metasaline species, reached +4 m altitude above the present bottom of the basin. After 15,430±80 yr B.P., the level rapidly rose to +27 m, as suggested by a tychoplanktonic mesosaline flora. Between 14,500 years and 13,000 years, finely lanminated sediments at +32 m contained successively a dominance of epiphytic mesosaline to hypersaline species and tychoplanktonic oligosaline diatoms, indicating weak fluctuations in water-level and salinity. At 13,000 years, strong changes in the diatom flora occurred; epiphytic oligo-hypersaline diatoms were replaced by planktonic meso-polysaline species. They indicate a deep salt lake (the lake reached +100 m). After 12,000 years, the lake level abruptly dropped, as suggested by fluviatile sediments with a benthic mesopolysaline diatom flora. The main lake was replaced by shallow saline ponds. A wet pulse occurred at 11,400 years, characterized by low water level (+7 m) and high salinity. This lacustrine phase remained until 10,400 yr B.P. These data indicate changes in Precipitation minus Evaporation (P-E). Our regional interpretations are based on a comparison with teh available data on the northern (Lake Titicaca) and southern (Lipez are) Bolivian Altiplano and on the northern Chilean Altiplano (Atacama Desert).  相似文献   

11.
The stable isotopic records of ostracode valves deposited during the last interglaciation in Raymond Basin, Illinois, have 13C and 18O values as high as +16.5 and +9.2 respectively, the highest values yet reported from continental ostracodal calcite. Located in south-central Illinois, Raymond, Pittsburg, Bald Knob, and Hopwood Farm basins collectively have yielded important long pollen and ostracode records that date from about 130000 years ago to the present. Although fossils from the present-day interglaciation are not well preserved, these records constitute the only described, conformable, fossiliferous successions of this age from the interior of glaciated North America.The high 13C values from Raymond Basin are attributed to the residual effects of methane loss either by ebullition or by emission through the stems of senescent emergent aquatic vegetation. A mass balance model suggests that an increase in 13C of dissolved inorganic carbon on the order of +15 is possible within a few hours given modest rates of methanogenesis of about 0.02 mol m-2 d-1. The 13C records from other studies of ostracode valves have values approaching, but not exceeding about +14 suggesting a limiting value to 13C enrichment due to simultaneous inputs and outputs of dissolved inorganic carbon.Values of 18O in ostracodal calcite are quite variable (–4 to +9) in sediment from the late Sangamon subepisode. A model of isotopic enrichment in a desiccating water body implies that a reduction in reservoir volume of 20% could produce this range of isotopic values. High humidity and evaporation probably account for most of the 18O variability.  相似文献   

12.
We explored the use of carbon and nitrogen isotopes (13C and 15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low 13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher 13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the 15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both 13C and 15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that 13C and 15N reflect shifts in historic lake trophic state.  相似文献   

13.
The relationship between surface sediment diatom assemblages and measured limnological variables in fifty eight lake samples from the south Bolivian Altiplano was examined by constructing a diatom-water chemistry dataset. Analysis of this dataset by canonical correspondence analysis revealed that salinity and ionic concentration accounted for a significant amount of the variation in the distribution of the diatom assemblages. Two methods weighted-averaging regression and calibration, and by-class mean percentage table were used to established a transfer function for future reconstruction of past lake water salinity and ionic concentration in the southern Bolivian Altiplano. Weighted-averaging regression and calibration with inverse deshrinking provided a better model for the water chemistry reconstructions in this region.  相似文献   

14.
As part of English Natures Lakes Flagship Project to address adverse environmental impacts on selected, important lakes, a proposal has been made to dredge Aqualate Mere. The site has experienced rapid, recent sedimentation thought to be derived from a nearby canal. The aim of this study has been to determine the recent sedimentation history of the site in order to assess the possibility of the disposal to land of its sediments and the efficacy of this form of lake restoration. A predominantly clayey silt layer was found across the lake beneath which darker, organic-rich sediments were noted. This transition may represent the input of canal-derived sediments, although it may reflect other environmental changes at this time. The radiometric dating technique employed was unable to date this sediment boundary. A further change in the characteristics of the upper part of the clayey silt layer may represent an additional influence of the canal. Heavy metal levels were modest, whereas nutrient levels were relatively high and some pesticides were detected. Topsoil erosion supplying nutrients and other compounds associated with agriculture have been an important source of the lower layers of the clayey silt sediments in particular. The highest levels of most pollutants were found in the finer sediments in the uppermost (post-1950s) part of the sediment profile. These sediments appear to reflect a change in the characteristics of the sediments of the canal, which was associated with a change in the nature of its water supply. The key geochemical properties of the sediments should not preclude the land-based disposal of dredged materials under current UK regulations for waste management. Accurate estimation of sediment quantities was limited, as the interface between the recent and underlying sediments was not positively identified at all sample points.  相似文献   

15.
The volcanogenic lake Laguna Potrok Aike, Santa Cruz, Argentina, reveals an unprecedented continuous high resolution climatic record for the steppe regions of southern Patagonia. With the applied multi-proxy approach rapid climatic changes before the turn of the first millennium were detected followed by medieval droughts which are intersected by moist and/or cold periods of varying durations and intensities. The total inorganic carbon content was identified as a sensitive lake level indicator. This proxy suggests that during the late Middle Ages (ca. AD 1230–1410) the lake level was rather low representing a signal of the Medieval Climate Anomaly in southeastern Patagonia. At the beginning of the Little Ice Age the lake level rose considerably staying on a high level during the whole period. Subsequently, the lake level lowered again in the course of the 20th century.  相似文献   

16.
Southeastern Missouri has been a major Pb mining region since 1720 AD. Missouri mines produce a Pb ore that has a distinctive elevated 206Pb/207Pb isotopic ratio (>1.30) that is easily recognized in Pb-contaminated sediments. Five 210Pb dated sediment cores from Horseshoe Lake, Madison County, Illinois were examined to reconstruct Pb-contamination of the site from southeastern Missouri mines and from a local Pb smelter located adjacent to the lake. Pb concentrations increased in the cores from 5 ppm in the early 1800s to approximately 350 ppm in the late 1940s and 1950s. Pb concentrations in recently deposited sediment range from 100 to 300 ppm depending on the location within the lake. Throughout the 1800s and early 1900s the 206Pb/207Pb ratios in the sediment cores increased indicating contamination from southeastern Missouri (mean = 1.243). After the local smelter began recycling lead-acid storage batteries in the 1950s, the 206Pb/207Pb ratio declined (mean = 1.224) suggesting contamination of Horseshoe Lake with Pb from sources elsewhere around the world. The results of this study demonstrate how isotopic ratios of Pb can be used to reconstruct historical anthropogenic contamination.  相似文献   

17.
Chrysophyte algae produce siliceous resting cysts (stomatocysts) that are becoming an increasingly useful class of paleoecological indicator microfossils. This paper provides a review of the role that stomatocysts play in the life cycle and reproductive ecology of freshwater planktonic chrysophytes. Such information provides paleolimnologists with greater insight into the ecology of the vegetative, planktonic growth phase of species contributing stomatocysts to lacustrine microfossil assemblages. Specific chrysophyte reproductive characteristics discussed include: temporal dynamics of vegetative growth and encystment, cyst induction, cyst survivorship, germination requirements and recruitment strategies. This information serves as an introduction to a special issue of the Journal of Paleolimnology which is dedicated to the Application of Chrysophyte Stomatocysts in Paleolimnology.This is the first in a series of four papers published in this dedicated issue entitled Application of Chrysophyte Stomatocysts in Paleolimnology. Dr. C. D. Sandgren served as guest editor for these papers.  相似文献   

18.
Amarga Lagoon, lat. 50°29 S and long. 73°45 S, it is located at the Torres del Paine National Park, Chile. The physical, chemical, and biological features of the lake were studied. According to salinity, the lake is mesosaline. Sodium and chloride were the dominant ions. Nitrogen was potentially limiting for phytoplankton growth. One Cyanophyceae species andArtemia were the predominant species in the plankton.Artemia provided abundant food for flamingoes.  相似文献   

19.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   

20.
Sediments of the marl lake Malham Tarn located in NW Englandpreserve an environmental record since 12 Ka. Eight Holocene pollen zones wereidentified, and the 13C of total organic carbon (TOC) showsthree stratigraphic divisions. The basal clay unit and overlayingsand/clay/marl unit have 13C of –24which decreases at the base of the principal marl unit to a mean value around–30, whilst the topmost black marl unit 13Cincreases to –28 at the surface. Representative samples of theseunits were selected for analysis of n-alkanes andn-fatty acids and their 13C.Samples of modern Chara and peat were analysed forcomparison. The clay unit has a minor contribution of redeposited matureorganic matter and autochthonous algae, the marl unit a high contribution ofChara, and the dark marl unit has a high contribution fromhigher plants. Compound-specific 13C revealssystematic differences between alkanes and fatty acids of different chainlength. The major shift in 13C in the short and medium chainfatty acids are probably due to the decreasing influence of carbonate rockflour as source of DIC. The major shift in 13C in the longchain n-fatty acids andn-alkanes could reflect the lower atmosphericCO2 concentration at Last Glacial. The negative shift of short chainfatty acids in organic rich dark marls reflects introduction of detrital peatinto the lake. The 13C results show a dramatic change fromdominance of autochthonous plus eroded sources up to Pollen Zone IV, then slowcolonisation of the hinterland by higher plants, followed by constantChara contributions throughout the deposition of the marl,and a further increase of higher plant material after the rise in water levelin 1791.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号