首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

2.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

3.
The availability of reactive phosphorus (P) may promote cyanobacterial blooms, a worldwide increasing phenomenon. Cyanobacteria may also regulate benthic P cycling through labile organic input to sediments, favouring reduced conditions and P release, ultimately acting as self-sustainment mechanism for the phytoplankton blooms. To analyse P–cyanobacteria feedbacks and compare external versus internal loads, we investigated P cycling in the Curonian Lagoon, a freshwater estuary with recurrent summer blooms. At two sites representing the dominant sediment types, we characterised P pools and mobility, via combined pore water analysis, calculation of diffusive exchanges and flux measurements via sediment core incubations. Annual P budgets were also calculated, to analyse the whole lagoon role as net sink or source. Muddy sediments, representing nearly 50 % of the lagoon surface, displayed higher P content if compared with sandy sediments, and most of this pool was reactive. The muddy site had consequently higher pore water dissolved inorganic phosphorus (DIP) concentrations maintaining high diffusive gradients. However, measured fluxes suggested that both sediment types were mostly P sinks except for a large DIP regeneration (nearly 30 μmol m?2 h?1) recorded at the muddy site during an intense cyanobacteria bloom. Such internal regeneration had the same order of magnitude as the annual external P load and may offset the net annual DIP sink role of the estuary. It may also prolong the duration of the bloom. Our results suggest that positive feedbacks can regulate N-fixing cyanobacteria blooms and internal P recycling, through either diffusive fluxes or sediment settling and resuspension.  相似文献   

4.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

5.
Sediment and pore water samples have been collected from the coastal tidal flat in the Shuangtaizi estuary, China, in order to investigate the geochemical behavior of iron, cadmium, and lead during diagenesis and to assess the degree of contamination. The calculated enrichment factors and geoaccumulation indices for separate elements show that anthropogenic activities have had no significant influence on the distribution of Fe and Pb in the study area, whereas the distribution of Cd has been closely influenced in this way. The high percentage of exchangeable Cd (average of 56.34%) suggests that Cd represents a potential hazard to benthic organisms in the estuary. The calculated diffusive fluxes of metals show that the most mobilized metal is Fe (9.22 mg m?2 a?1), followed by Cd (0.54 mg m?2 a?1) and Pb (0.42 mg m?2 a?1). Low Fe2+ contents in surface pore water, alongside high chromium-reducible sulfur contents, and low acid-volatile sulfur, and elemental sulfur contents at 0–25 cm depth in sediments show that Fe2+ is formed by the reduction of Fe oxides and is transformed first to a solid phase of iron monosulfides (FeS) and eventually to pyrite (FeS2). The release of adsorbed Pb due to reductive dissolution of Fe/Mn oxides during early diagenesis could be a source of Pb2+ in pore water. From the relatively low total organic carbon contents measured in sediments (0.46–1.28%, with an average of 0.94%) and the vertical variation of Cd2+ in pore water, sulfide or Fe/Mn oxides (instead of organic matter) are presumed to exert a significant influence on carrying or releasing Cd by the sediments.  相似文献   

6.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   

7.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

8.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

9.
Terrestrial and marine ecosystems in Southeast Alaska are linked by the flow of freshwater from precipitation and glacial runoff, which transports nutrients and organic matter (OM) downstream to estuaries. We examined the contribution of terrestrial-riverine and marine OM to diets of fishes (N = 257, four species) and invertebrates (N = 90, six species) collected from glacially influenced estuaries in Southeast Alaska using multiple stable isotopes (δ13C, δ15N, and δ34S). Multivariate analysis of similarity (ANOSIM) was used to quantify variation in stable isotope composition of consumers across 6 months and three sites with watersheds that differed in their glacier and forest composition. Fishes showed weak differences (ANOSIM R = 0.141) in stable isotope composition among sampling months, moderate differences (ANOSIM R = 0.375) among sites, and strong differences (ANOSIM R = 0.583) among species. Invertebrates showed moderate differences (ANOSIM R = 0.352) in stable isotope composition among sampling months and strong differences among sites (ANOSIM R = 0.710) and species (ANOSIM R = 0.858). We found the greatest differences in stable isotope composition between the two estuary sites with watersheds containing the highest and lowest glacial coverage, indicating that the contribution of allochthonous OM to consumer diets varies across watershed types. Invertebrates collected from the site with the lowest glacial coverage in the watershed were more depleted in δ13C and δ34S, indicating higher use of terrestrial-riverine OM, than those at sites with higher watershed glacial coverage. High variation in stable isotope composition among species, months, and sites underscores the complexity of estuary food web responses to future glacier loss.  相似文献   

10.
This study presents isotope geochemical analyses conducted on water column samples and core sediments collected from the Swan Lake Basin. Water analyses include the dissolved methane (CH4) content and the ratio of carbon-13 to carbon-12 (δ13C) in dissolved inorganic carbon (DIC). The core sediments – sandy muds containing inorganic calcite, organic matter, and opal phases ± ostracods – were examined by X-ray diffraction, dated by radiocarbon (14C), analyzed for wt% organic carbon, wt% organic nitrogen, wt% organic matter, wt% calcite, δ13C of bulk-sediment insoluble organic matter (kerogen), 18O:16O ratio (δ18O) and δ13C of bulk and ostracod calcite. Of particular significance is the large enrichment in carbon-13 (δ13C = +4.5 to +20.4‰ V-PDB) in the calcite of these sediments. The 13C-enriched calcite is primarily formed from DIC in the water column of the lake as a result of the following combined processes: (i) the incorporation of 13C enriched residual carbon dioxide (CO2) after partial reduction to CH4 in the sediments and its migration into the water column-DIC pool; (ii) the preferential assimilation of 12C by phytoplankton during photosynthesis; (iii) the removal of 13C-depleted CH4 by ebullition and of organic matter by sedimentation and burial. The 13C enrichment was low between 3624 and 2470 yr BP; high between 2470 and 1299 yr BP; and moderate since 1299 yr BP. Low 13C enrichment was formed under low water-column carbon levels while higher ones were formed under elevated rates of biomass and calcite deposition. These associations seem to imply that biological productivity is the main reason for carbon-13 enrichments.  相似文献   

11.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

12.
Lignin oxidation products and stable carbon isotope distributions are used to investigate the sources, transport, and chemical stability of land-derived organic matter in dated cores of modern sediment from the southern Washington State continental shelf and slope. There is no evidence for significant chemical alteration of lignin compounds in these sediments for time periods of up to 400 yr. Gymnosperm woods and nonwoody angiosperm tissues account for most of the land-derived organic matter in the deposits. These land plant remains have an average δ13C of approximately ?25.5% and are concentrated in a narrow band of silty sediment which extends northward from the Columbia River mouth along the mid-shelf. Marine organic matter having an approximate δ13C of ?21.5%, strongly predominates in most other shelf and slope environments. Net fluxes of land-derived organic matter into the surface 5 cm of the cores vary directly with sediment accumulation rates. Net fluxes of marine organic material into the surface sediments are highest in environments which favor the preservation of organic matter, but correspond to less than 1% of the primary productivity in the overlying waters.  相似文献   

13.
The distributions of a series of structurally related C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary have been determined. The suite of alkenes detected differs both quantitatively and qualitatively from those previously reported in other estuanne and coastal regions. Four C25 mono- and dienes and one C30 diene comprise 73–91% of the total alkenes in all surface (upper 2.5–5 cm) sediments analyzed. However, significant geographic variations exist in the relative abundance of these five compounds throughout the estuary. A comparison of alkene concentrations with δ13C of the bulk sedimentary organic matter has shown that the geographic variations of some alkenes reflect the distribution of marine organic matter, suggesting a marine source for these compounds. The distributions of other alkenes are not similarly correlated. In particular, concentrations of the C30 diene are relatively constant and exhibit no dependence on the origin of organic matter in these sediments. This distribution implies an in situ production of this alkene throughout the estuary. Analysis of several sediment cores reveals that alkene concentrations are generally highest at the surface and decrease to low, constant values within the upper 25 cm. An exception is the subsurface concentration of one C25 diene, which exhibits an increase at the same depth in two separate upper bay cores.  相似文献   

14.
《Organic Geochemistry》1999,30(2-3):161-188
Organic-rich source rocks have generally been attributed to enhanced preservation of organic matter under anoxic bottom waters. Here, geochemical analysis of kerogen and whole rock samples of organic-rich (lithofacies B1) and organic-lean (lithofacies B2) laminated mudrocks of the Devonian–Carboniferous Exshaw Formation, Alberta, highlight the importance of primary production in governing the quantity and quality of organic matter. Lower Si/Al, K/Al, Ti/Al and quartz/clay ratios in lithofacies B2, similar maceral types and the laminated fabric of the two lithofacies indicate that the quality and quantity of organic matter are not related to grain size, redox or organic matter source changes. High Total Organic Carbon (TOC) and Hydrogen Index (HI), low Oxidation Index (Ox.I. ratio of oxygen functional groups to aliphatic groups derived by FTIR), lighter δ15Ntot and heavier δ13Corg isotopes indicate that kerogen of lithofacies B1 accumulated during periods of high organic-carbon production and delivery of relatively fresh, labile, well-preserved organic matter to the sea floor. In contrast, low TOC, HI, high Ox.I., heavier δ15Ntot and lighter δ13Corg isotopes indicate low primary productivity and delivery, high recycling and poor preservation of organic matter during accumulation of lithofacies B2.  相似文献   

15.
Net ecosystem metabolism (NEM) was measured in the Piauí River estuary, NE Brazil. A mass balance of C, N, and P was used to infer its sources and sinks. Dissolved inorganic carbon (DIC) concentrations and fluxes were measured over a year along this mangrove dominated estuary. DIC concentrations were high in all estuarine sections, particularly at the fluvial end member at the beginning of the rainy season. Carbon dioxide concentrations in the entire estuary were supersaturated throughout the year and highest in the upper estuarine compartment and freshwater, particularly at the rainy season, due to washout effects of carbonaceous soils and different organic anthropogenic effluents. The estuary served as a source of DIC to the atmosphere with an estimated flux of 13 mol CO2 m?2 year?1. Input from the river was 46 mol CO2 m?2 year?1. The metabolism of the system was heterotrophic, but short periods of autotrophy occurred in the lower more marine portions of the estuary. The pelagic system was more or less balanced between auto- and heterotrophy, whereas the benthic and intertidal mangrove region was heterotrophic. Estimated annual NEM yielded a total DIC production in the order of 18 mol CO2 m?2 year?1. The anthropogenic inputs of particulate C, N, and P, dissolved inorganic P (DIP), and DIC were significant. The fluvial loading of particulate organic carbon and dissolved inorganic nitrogen (DIN) was largely retained in two flow regulation and hydroelectric reservoirs, promoting a reduction of C:N and C:P particulate ratios in the estuary. The net nonconservative fluxes obtained by a mass balance approach revealed that the estuary acts as a source of DIP, DIN, and DIC, the latter one being almost equivalent to the losses to the atmosphere. Mangrove forests and tidal mudflats were responsible for most of NEM rates and are the main sites of organic decomposition to sustain net heterotrophy. The main sources for this organic matter are the fluvial and anthropogenic inputs. The mangrove areas are the highest estuarine sources of DIP, DIC, and DIN.  相似文献   

16.
Organic carbon isotopes in sediments have been frequently used to identify the source of organic matter.Here we present a study of organic δ~(13)C on two sediment profiles influenced by guano from Guangjin and Jinqing islands in the Xisha Archipelago,South China Sea.Organic matter from ornithogenic coral sand sediments has two main sources,guano pellets and plant residues,and their organic δ~(13)C(δ~(13)C_(OM)) are significantly different.Organic carbon δ~(13)C_(guano) is much higher thanδ~(13)C_(plants),and δ~(13)C_(OM)of bulk samples is intermediate.Based on a two-end-member mixing model,the proportions of guano-and plant-derived organic matter in the bulk samples were reconstructed quantitatively.The results showed that seabirds began to inhabit the islands around approximately1200-1400 AD,and that guano pellets have been an important source of soil organic matter since then.With the accumulation of guano-derived nutrients,plants began to develop prosperously on the islands in the last 200 years,which is reflected by the significant increase of plant-derived organic matter in the upper sediment layer.However,guano-derived organic matter decreased greatly in recent decades,indicating a rapid decrease in seabird population.Our results show that organic δ~(13)C can be effectively used to quantitatively determine different source contributions of OM to bulk ornithogenic coral sand sediments.  相似文献   

17.
To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.  相似文献   

18.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

19.
The C and N stable isotope compositions of some flora of East Africa from coastal Tanzania and Amboseli National Park (Kenya) are used to assess if they can be used as a terrestrial end member during the estimation of terrestrial fraction in coastal marine sediments. The results of C isotope composition of various tree leaves, which average −29.3 ± 1.4%, indicate that these tropical higher land plant species follow a Calvin-Benson or non-Kranz (C3) type of metabolism. The results for grass species, which average −13.2 ± 2.4%, indicate that most of them follow a Hatch-Slack or Kranz (C4) type of metabolism. However, some of the succulent plants from the Amboseli National Park have δ13C values that average −14.7%, an indication that they follow a CAM (Crassulacean Acid Metabolism) type of metabolism. The N isotope values are relatively higher than expected for the terrestrial organic material. The average δ15N values for both tree and grass samples are higher than 5% and fall within the range normally considered to be marine. The high enrichment in 15N may be related to the environmental conditions in which plants thrive. Plants growing in sandy, dry and overgrazed environments are expected to be enriched in 15N owing to full utilisation of all available N species, regardless of their isotopic compositions. Other processes which may cause an enrichment in 15N include adsorption by various types of clay minerals, supply of 15N-enriched nitrate through sea-spray, and local denitrification, especially in swampy and lake margins where the input of organic matter may be higher than the rate of decomposition.The stable isotopic composition of organic C and N for surficial organic matter for the coastal marine sediments averages −17.0 ± 0.9% and 5.4 ± 1.1%, respectively. These values indicate a substantial contribution of C4 plants and sea grasses. However, contribution of C4 relative to that of sea grasses can not be evaluated owing to the fact that there is no significant difference in the isotopic compositions between the two groups.In the savannah environment, where a contribution from the C4 types of plants might be substantial, the δ13C value for a terrestrial end member needs to be established prior to evaluation of the terrestrially derived organic matter in the marine environment. Owing to a significant contribution of sea grasses to the total organic matter preserved in coastal marine sediments, the stable isotopes of organic C seem to have a limited applicability as source indicators in the East African coastal waters. Furthermore, the results indicate that N stable isotopes seem to have a limited applicability as source indicators in coastal waters of East Africa. However, more work needs to be conducted to determine the terrestrial and sea grass end member values for the coastal areas.  相似文献   

20.
In order to examine the variations in concentrations of dimethylsulfide (DMS) and its fluxes to the atmosphere, 25 major and medium estuaries from Indian subcontinent were sampled during wet and dry periods. River discharge brought substantial amount of nutrients and suspended particulate matter (SPM) to the Indian estuaries; however, the concentration of phytoplankton biomass was severely limited by latter due to shallowing of photic depth. Bacillariophyceae was the dominant phytoplankton group in the Indian estuaries followed by green algae, Cyanophyceae, and Dinophyceae. Relatively higher concentrations of DMS were observed in the estuaries located along the east (3.6 ± 5.7 nM) than the west coast of India (0.8 ± 0.3 nM) during wet period whereas no significant differences were observed during dry period. The concentrations of DMS were significantly lower during wet than dry period and it was consistent with the phytoplankton biomass. The slope of the relation between DMS and phytoplankton biomass displayed a significant spatial variation due to contribution of different groups of phytoplankton in the Indian estuaries. The concentrations of DMS in the Indian estuaries were higher than other estuaries in the world except some Chinese estuaries. The annual mean flux (1.95 ± 2.5 μmol m?2 day?1) from the Indian estuaries is lower than that of other estuaries in the world, except Pearl River estuary due to inhibition of phytoplankton growth by suspended load and low flushing rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号