首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用常规观测资料以及气象卫星云图、雷达监测产品、NCEP/NCAR1°×1°再分析资料,对2008年6月3日发生在鄂东黄冈市的强对流天气过程进行天气学和动力学诊断分析。结果表明:这次强对流天气过程主要是华北冷涡后部偏北气流带来的强冷平流和中低层暖湿切变线所致,下层暖湿、上层干冷的对流不稳定层结为强对流的形成和发展提供了十分有利的条件;强对流天气发生在对流云团移动前方TBB等值线密集区与TBB冷中心之间的区域;典型弓形回波引起的地面大风对应的近地层径向速度图上一般表现为很强的辐散流场;当风暴相对螺旋度(SRH)大于150m2·s-2时,冰雹、大风和短时强降水等出现的可能性非常大,且SRH值越大,风暴旋转性越大,造成地面大风越强。  相似文献   

2.
利用国家气象观测站常规探测数据、怀化区域自动雨量站和雷达数据以及NCEP1°×1°再分析资料,对怀化2020年1月初一次罕见的强对流天气过程进行了研究分析。结果表明:此次强对流天气在怀化南北部表现出不同的特征,中北部强对流天气属于高架对流类,南部属于斜压锋生类,且强度明显强于中北部;“上干下湿”特征、较强的下沉对流有效位能以及强的垂直风切变,有利于产生雷暴大风、冰雹等强对流天气;中北部受逆温层抑制作用,而南部与中北部相比具有更有利于强对流天气发生发展的水汽条件、辐合上升运动条件以及不稳定条件,这也是造成两者差异的主要原因。雷达分析表明,怀化南部发展较高的强回波单体是造成局地短时强降水出现的主要原因,超级单体导致出现冰雹,低仰角速度大值区预示着雷达大风的产生,风廓线中中层干侵入现象对强对流天气开始、结束有较好的指示意义。  相似文献   

3.
陈涛  张芳华  宗志平 《高原气象》2012,31(4):1019-1031
利用地面自动站资料、多普勒雷达资料、FY-2E卫星云图及NCEP FNL 1°×1°逐6h分析场资料,分析了2010年5月5-7日我国南方春季大范围强对流天气过程中尺度对流系统(MesoscaleConvective System,MCS)的发生、发展特征,重点探讨了环境条件差异及其对MCS的影响。结果表明,由于环境场三维动力结构、水汽条件和热力不稳定条件配置的差异,造成对流发展的多样化特征。利用相对风暴螺旋度分析了环境场动力特征对MCS组织结构的影响。重庆上空中高层较干且具有较强的垂直切变,环境场气旋式旋转相对深厚,随着锋面强迫抬升克服对流抑制作用后,局地激发出相对孤立的类似超级单体的强对流风暴,造成冰雹和雷暴大风等天气;而贵州湿层相对深厚,高低空急流的耦合机制更明显,贵州北部的多单体对流风暴组织程度较高,MCS尺度相对较大,局地短时强降水较明显;广东具有最强的垂直切变和深厚湿层,在浅薄冷空气的触发机制下,发展出深厚湿对流形式的中尺度对流复合体,出现了高度组织化的线状对流带,MCS尺度大、持续时间长,造成较强的降水。  相似文献   

4.
利用常规观测资料、多普勒天气雷达资料及NCEP再分析资料,对2018年5月18日湖北省中东部地区一次尾随层状云类中尺度对流系统(MCS)的雷达回波特征和地面中尺度系统演变特征进行了分析。结果表明:1)短波槽东移南压,引导冷空气南下,与副热带高压外侧强劲的西南暖湿急流长时间在湖北省中东部地区交汇,形成有利于诱发MCS的大尺度环流背景;2)强降水的主要发生时段集中于尾随层状云降水回波对流线形成的初始阶段和成熟阶段,强雨团主要位于对流线附近及层状云降水回波头部,同时伴有雷暴大风天气;3)西南涡的发展为尾随层状云类MCS高效降水产生提供有利的环境场,边界层中尺度辐合线在对流的触发、发展、组织的过程中起到重要的作用,地形的抬升作用及阻挡作用,使MCS持续发展,同时,MCS后部"冷池"能量累积溢出形成雷暴冷出流与环境南风辐合,不断激发新的MCS;4)对流线附近存在明显的上升气流,环境风入流提供了充足的水汽供应,其前侧、后方分别有一支不同高度的下沉气流(出流或入流),并与环境风辐合,使MCS向前持续发展,并在后方不断激发新的MCS,造成较长时间的强降水。  相似文献   

5.
受高空槽、切变线、静止锋、弱冷空气、西南急流、地面辐合线影响,2022年4月14日黔西南州出现大范围强对流天气。本文对过程中ROSE2.0进行应用检验分析,结论如下:(1)过程第一阶段对流强度偏弱;第二阶段超级单体或强多单体风暴发展和成熟,对流以大冰雹、8级雷暴大风、40 mm以下短时强降水为主;第三阶段列车效应最明显,风暴移速较快,对流以8~11级雷暴大风、中冰雹、40~60 mm短时强降水为主。(2)ROSE2.0与本地雷达软件相比,大冰雹时CR基本一致,但VIL、HI偏小,ET偏大;ROSE2.0与实际理论值相比,VIL值明显偏低,ET、HI偏大;雷暴大风时低层径向速度ROSE2.0比本地的要小,但中高层偏大;短时强降水时一小时雨强估计ROSE2.0比实际值偏小。  相似文献   

6.
苟阿宁  王玉娟  张家国  吴涛  韩芳蓉  冷亮 《气象》2019,45(8):1052-1064
2016年7月6日在武汉发生了一次造成城市严重内涝的暴雨过程。本文利用多普勒天气雷达、逐小时地面加密观测资料和EC 0.25°×0.25°细网格模式数据,对这次梅雨锋附近极端暴雨的降水特征、中尺度对流系统演变和暴雨成因等进行了细致分析,结果表明:(1)本次大暴雨是在典型梅雨期环流形势下发生的,副热带高压西北侧的高温、高湿区配合江淮切变线稳定少动,暴雨则出现在西南低空急流风速辐合区,925 hPa西南低空气流的进退有利于东北路冷空气南下,这与雨带的落区和维持有密切联系。(2)梅雨锋狭长雨带上的降水量分布呈现不均匀性,强暴雨主要集中在几个中心,降水中心的分布与梅雨锋附近低层风场扰动有关,梅雨锋雨带上产生大暴雨是一个典型的中尺度对流系统(MCS),沿着西南一东北走向的引导气流移动,湖北特殊地形促使"列车效应"进一步加强。(3)列车线主要由江淮切变线或边界层辐合线附近的中尺度系统扰动形成,地面中尺度气旋性辐合及低空西南急流长时间维持,是形成"列车效应"的主要原因。(4)MCS在雷达回波上有三个明显特征,第一个是MCS在雷达回波形态上属于带状对流,由层状云和列车线共同组成,雨带与西南气流走向一致;第二特征是层状云和列车线移动方向几乎一致,MCS移动方向与列车线走向平行,垂直于列车线的分量很小;第三个是对流单体在列车线上游新生、加强,并向下游移动,对流单体的传播方向和列车线方向相反。(5)西南急流向近地面扩展、"牛眼"结构及风随高度顺转等中尺度系统,促使近地面扰动加强,诱发强降水。  相似文献   

7.
利用常规观测资料、FY-2G/2E卫星黑体亮温(TBB)资料、多普勒天气雷达资料与ERA-Interim再分析资料,对2016年4月17—18日南岭山脉一次强对流天气过程进行了诊断分析。结果表明:(1)该过程前期,受地面倒槽与辐合线影响出现暖区降水,后期随着地面冷空气侵入配合低空切变线与高空槽东移南压迅速转变为锋面降水,强降水落区与南岭山脉走向一致,大暴雨由多个中尺度对流系统(MCS)移入和有利地形作用造成;大冰雹、雷暴大风主要出现在暖区降水时段,暖区短时强降水以高质心降水为主,锋面越山之后强天气主要为低质心短时强降水,雷暴大风和冰雹较少出现。(2)雷达回波图上中层径向辐合的出现,对雷暴大风具有预警参考意义;中气旋、高垂直累积液态水含量(VIL)、回波悬垂、有界弱回波等回波特征对提前预警大冰雹有一定的指示作用。(3)不同类型强天气发生的大气层结条件存在差异,上层干区深厚、低层湿度条件较好有利于产生大冰雹,大的0—6 km垂直风切变有利于冰雹增长;大的下沉对流有效位能(DCAPE)是预报雷暴大风的一个参考指标;整层温度露点差和DCAPE小是判断只出现短时强降水的参考依据。(4)南岭及其附近地区"喇叭口"地形和迎风坡地形有利于低层气流辐合触发对流,造成暴雨多发和降水时间延长,南岭背风坡的锋生作用使南岭山脉南麓出现雷暴大风、冰雹等天气的可能性增大。  相似文献   

8.
该文利用2005-2014年丰都县地面天气、探空数据、NCEP 1°×1°FNL再分析资料等,对丰都地区冰雹、雷暴大风、短时强降水这3类强对流天气特征进行统计分析,得出这3类强对流天气的时空分布特征,并从天气个例出发,利用实况资料对强对流天气的差异进行分析,为强对流天气的预警预报提供参考。得到如下结果:短时强降水通常出现在5-9月,大风通常出现在5—8月,冰雹通常出现南部的七跃山脉和北部的蒋家山和黄草山脉附近~([1]),2005—2014年间共出现了7次,3—8月均有发生。通过计算3种强对流天气环境场参量,归纳出3种物理量参数的差异:大气可降水量、AT500-T850,K指数、抬升指数(LI)、相对湿度、散度场分布等在冰雹、短时强降水和大风天气中有明显的差异,冰雹和短时强降水的AT500-T850相差了近5℃,大风天气的值介于冰雹和短时强降水之间。大气可降水量分布上,短时强降水的大气可降水量(PW)平均值为58 mm,比冰雹值大约多了10 mm,比大风值多了14 mm。短时强降水出现时几乎整层都是处于饱和的状态,冰雹和大风天气几乎只在中低层有较饱和的水汽,而高层的相对湿度平均值在40%~50%左右。对流指数方面,K指数和LI指数都很好的指示了强对流天气的发生,K指数在短时强降水发生时其平均值在39.8℃左右,较冰雹和大风分别高1.6℃和3℃。短时强降水出现环流位置大多位于600 hPa以下,而冰雹则在300 hPa左右,大风在400 hPa左右。  相似文献   

9.
一次夏季低涡系统中MCS演变特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2011年7月11-13日,黑龙江省西部连续出现3次中尺度强对流天气,伴有短时强降水、冰雹、大风、雷电等天气。利用多种观测资料,对MCS环流、中尺度及物理量特征进行分析,探究低涡系统下MCS的演变规律。结果表明:地面辐合线和干线是触发强对流天气产生的重要因素。高低空一致的切变线和辐合线促使MCS的发展,MCS向不稳定能量区移动。假相当位温、K指数、沙氏指数和上干下湿的水汽条件及上冷下暖的温度平流等物理量因素对MCS发生发展有重要指示作用。飑线发生在MCS云团强度梯度大的前边界,该地域是强对流天气的多发地。  相似文献   

10.
王孝慈  李双君  孟英杰 《气象》2022,48(5):633-646
利用自动气象站逐小时和逐5 min观测资料、长江中游雷达组合反射率因子SWAN拼图产品及NCEP FNL再分析资料,对武汉地区4次低质心类短时强降水对流风暴特征进行分析。结果表明:不同的天气背景诱发的对流系统特征不同,低层暖强迫造成的斜压不稳定背景下,环境条件高能高湿,雷暴冷池的积累有利于稳定性降水前沿触发线状强对流;斜压锋生天气背景下,冷暖剧烈交汇使得大气斜压性显著增强,地面多有中尺度气旋波发展,锋区冷区稳定性降水中多伴随短时强降水,而暖区能量、湿度条件更好,易诱发短时强降水等分散性强对流;准正压天气背景下,大气斜压性弱,环境高能高湿,多由近地面层流场强迫和局地热力差异触发剧烈的热对流活动。从对流风暴雷达回波特征和降水特征来看,TS类线状中尺度对流系统(MCS)移速较快,短时强降水范围小;准静止类表现为带状走向的大范围层状云回波稳定维持,中间伴有多个积云对流生消迭代,每一阶段降水增强都与新生对流单体途经武汉站点相对应;组织合并类在回波合并时,意味着短时强降水的发展增强,合并后的回波形态和走向影响着降水的强度和持续时间。在不同的环境背景、触发诱因和组织形态下,短时强降水发生前后地面气象...  相似文献   

11.
利用地面观测资料、天气雷达资料和ECMWF-ERA5逐小时0.25°×0.25°再分析资料,主要从环境条件和触发机制两个方面,对2019年6月8日(简称过程A)、9日(简称过程B)影响江苏省北部的两次冷涡型强对流天气过程进行了对比分析。结果表明: 过程A是由暖湿气流引起的短时强降水伴随雷暴大风的湿对流天气;过程B则是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流天气。过程A,由暖湿气流形成强对流不稳定层结,垂直风切变强度一般,湿层深厚,有利于短时强降水的发生;过程B,中高层的较强干冷平流叠加在低层暖湿平流上而形成强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹的发生。两次天气过程的触发机制都是地面辐合线。过程A的预报重点为水汽条件和来自上游的对流系统与当地地面辐合线的耦合;过程B的预报重点为大气的不稳定度和冷涡后部冷空气的干侵入与地面辐合线的耦合。  相似文献   

12.
郭兰 《陕西气象》2018,(4):18-22
利用高空、地面观测资料,NCEP 1°×1°6h间隔再分析资料和三门峡多普勒雷达产品,对三门峡市2017年7月10日的一次强冰雹天气过程进行了分析。结果表明:此次冰雹过程是在高空西北气流背景下产生的,低层切变线为对流的发生提供了动力条件;强不稳定层结和垂直风切变的长时间维持是导致对流快速发展并且持续的重要原因之一;在干对流环境中的不稳定能量条件下,强对流发生在边界层中的高湿区内;中气旋基本沿着超级单体入流方向前部的辐合区移动;垂直累积液态含水量(VIL)跃增和骤降的时间与冰雹和大风发生的时间相对应,指示大风天气的VIL变化值远小于指示冰雹天气的VIL变化值。  相似文献   

13.
利用常规探空观测和WRF分析场等资料,分析了2005—2014年沈阳地区强对流天气的气候背景特征、演变规律及日变化特征等,将强对流天气划分为冰雹、雷暴大风(≥17.2 m·s-1)、短时强降水(≥20 mm·h-1)和混合型4种类型;并分析探空资料在强对流天气潜势预报中的作用,着重探讨14时(02时)探空资料对沈阳地区强对流天气短时临近潜势预报的作用。结果表明:2005—2014年沈阳地区4种强对流天气中,以短时强降水天气发生次数最多,其次为雷暴大风天气,冰雹天气的发生次数最少,多数强对流天气发生在午后至傍晚。由合成T-Log P图的温湿廓线可知,沈阳地区短时强降水天气发生时中低层存在显著湿区,与雷暴大风和冰雹为主的强对流天气温湿廓线明显不同,多数合成T-Log P图的显著特点为中层大气干燥。冰雹型强对流天气的0℃层和-20℃层高度明显低于其他强对流天气类型的高度;冰雹型强对流天气T700-T500和T850-T500显著大于短时强降水型及雷暴大风型强对流天气,且T850-T500的指示意义更好;4种强对流天气类型平均SI均出现了正值,说明SI失去了不稳定性的指示意义;短时强降水天气的K指数明显高于冰雹天气;雷暴大风天气发生时对流有效位能明显小于其他强对流天气类型。可见,WRF中尺度模式中的T-Log P预报图对沈阳地区强对流天气的预报具有一定的指导意义。  相似文献   

14.
基于常规观测资料、NCEP(2.5°×2.5°)再分析资料、FY-2G卫星云图资料和多普勒雷达等资料对2018年6月10日发生在甘肃省平凉市的冰雹等强对流天气过程进行分析,得出以下结论:(1)此次强对流天气过程属于典型的西北气流型,高空强冷平流、强对流发生区明显的切变线和地面辐合线以及高层气流引导地面辐合线附近生成的中尺度对流系统MCS,是造成此次强天气的主要影响系统。(2)中尺度辐合线和干线为此次强对流天气提供较好的触发机制;强对流发生区螺旋度的异常增大为雹暴系统的发展增强提供了强有力的环境场条件;强垂直风切变可促使不稳定能量释放形成冰雹等天气,和湿斜压作用共同形成MCS发生发展的有利条件;冰雹发生区0℃层、-20℃层高度及二者之间的厚度均有利于大冰雹的形成。(3)卫星云图中MCS发展明显,容易给局地强对流输送能量,利于强对流的维持发展,且强对流区主要位于云顶亮温TBB低值区的后部和南部,多普勒雷达资料显示,引发强对流天气的回波单体附近,悬垂回波、弱回波区、钩状回波等特征明显,对应径向速度图有明显的中气旋、中层径向辐合及风暴顶辐散等特征配合,对此次冰雹等强对流天气有很好的指示作用。  相似文献   

15.
统计内蒙古地区2011—2014年汛期短时强降水、冰雹、大风强对流天气的基础上,利用T6391°×1°逐3 h的数值模式产品计算物理量,选取与强对流天气相关性较好的敏感对流参数作为预报因子,通过权重分析建立未来0~12 h强对流天气及落区的潜势预报方程,并确定判别不同强对流天气的阈值。通过对2013年8月进行的预报试验结果表明:发生强对流天气的平均TS评分为0.35;不发生强对流天气的平均TS评分为0.51;3种强对流天气预报中对冰雹预报效果不理想,但对大风及短时强降水预报效果好。  相似文献   

16.
利用常规观测资料、FY 4A气象卫星红外云图以及多普勒天气雷达资料,分析了2019年5月17日夜间发生在京津冀中部伴有强冰雹、短时强降水和短时大风的强对流天气过程。利用VDRAS资料与国家自动站资料进一步揭示对流风暴形成的环境条件以及后向传播的机制。结果表明:在有利于强对流发生发展的大尺度环流背景场下,京津冀中部的对流系统迅速发展。前期京津一带的强对流天气形成较强的东北风冷池出流,与渤海湾的东南气流交汇,在廊坊北京交界一带形成了向南移动的地面辐合线,并触发了对流。由于新生风暴单体与成熟风暴之间的正反馈作用,使得在廊坊北部形成东西向带状风暴系统,造成对流风暴不断向西传播。向西传播的风暴与西北东南向的平流共同作用,最终导致风暴运动方向为西南方向,成为典型的后向传播风暴。  相似文献   

17.
利用常规气象资料、多普勒雷达资料以及NCEP2.5°×2.5°再分析资料,从天气形势、物理量场和雷达回波演变特征分析2016年6月22日通辽市强对流天气成因。结果表明:此次强对流天气发生在中高层偏西气流带来的弱冷空气叠加在低层切变线南侧的暖湿空气之上,促使对流强烈发展;垂直累积液态含水量大值区和"逆风区"分别对冰雹和短时强降水有很好的指示意义;强对流天气发生在地面中尺度辐合线附近;高空急流与低层低涡的配置结构,为这次强对流天气提供了必要的动力条件。  相似文献   

18.
冷涡背景下不同类型强对流天气的成因对比分析   总被引:1,自引:0,他引:1  
蔡雪薇  谌芸  沈新勇  郑永光  陶亦为 《气象》2019,45(5):621-631
利用常规气象观测资料、自动站资料、卫星、雷达和NCEP再分析资料,针对2015年8月22日冷涡背景下华北东北部和黄淮地区同时出现的不同类型强对流天气,对比分析引发不同天气的两种中尺度对流系统的演变过程及冷涡背景下不同强对流天气的成因。具体结论如下:(1)同一冷涡背景下,华北东北部位于冷涡中心外围西南象限和地面冷高压前沿,触发的分散性多单体风暴位于冷涡外围的涡旋云系中,引发以短时强降水为主的强对流天气;黄淮地区位于冷涡后部和地面冷锋前,槽后晴空区的多个对流单体,合并后形成人字形飑线系统引发短时强降水、冰雹和雷暴大风天气;(2)环境热力和水汽的差异为形成不同的强对流天气提供了前提条件:华北东北部受高层暖脊影响,地面高压后部的偏东气流带来水汽输送,整层暖湿的条件利于产生强降水;黄淮地区高层有补充干冷空气,利于热力不稳定条件发展,但黄淮地区低层水汽不足,风雹天气在较干环境场中不易被触发;(3)引发不同强对流天气的对流触发机制不同,两处的初始对流均受同一地面辐合线影响,但华北东北部在地形抬升与辐合线共同作用下不断新生单体;黄淮地区的初始局地热对流形成后,其前沿的辐散出流与环境风形成新的辐合,使原辐合线断裂和转向;(4)出现不同强对流天气时垂直风切变不同,黄淮风雹区的中层垂直风切变更显著,有利于形成持续性的强风暴;强对流天气发生时,华北东北部中低层风场的演变与天气尺度系统的变化有关,黄淮地区中低层风的垂直分布与中尺度对流系统的发生发展有关。  相似文献   

19.
利用常规观测资料、加密地面资料、卫星云图和多普勒雷达回波等资料,从天气形势、物理量场和回波演变特征等方面对2011年6月11日午后发生在豫北地区的强对流天气进行分析发现:高空冷平流和24 h显著降温区叠加在低层暖区之上,形成上干冷下暖湿的位势不稳定层结,为强对流的产生提供了层结条件;地面暖低压发展和辐合中心、辐合线是这次强对流天气的触发机制;0-6 km较大的垂直风切变有利于强对流天气的发展和维持。卫星云图和雷达产品显示:对流云团的发展和移动与地面切变线、雷达回波一致,并可预测强天气落区。当回波中心强度≥50 d Bz、回波顶高≥12 km、垂直累积液态含水量≥45 kg/m2时,极易造成短时强降水和冰雹天气。三体散射特征和中气旋的出现对确定发布冰雹预警有指示意义,17:50第一次观测到三体散射特征发布冰雹预警,时效在20~90 min。垂直液态含水量在强降水发生前20 min开始剧增,为判别短时强降水等强对流天气提供有效依据。  相似文献   

20.
利用呼伦贝尔市CIMISS系统实况资料,统计分析了2010—2021年5—9月东北冷涡背景下的强对流天气时空分布及物理量参数特征。结果表明:(1)5月雷暴大风次数最多,6月冰雹次数最多,6—8月是短时强降水集中发生期,尤以8月次数最多。(2)强对流天气主要出现在12:00—20:00,其中短时强降水每个时次均有发生,但雷暴大风与冰雹天气在21:00—次日08:00基本没有发生过。(3)大兴安岭西部雷暴大风站次较多;大兴安岭东北部、岭上及岭西北的冰雹站次较多;短时强降水与强对流天气空间分布特征较为一致,均是大兴安岭岭上南段与岭东的站次较多。(4)雷暴大风天气的风速多以17.2~20.7 m·s-1为主;短时强降水量级为20.0~29.9 mm的站次占总站次的74.3%;持续时间小于5 min冰雹居多,直径小于5 mm冰雹的站次占总站次的49.1%。(5)短时强降水850 hPa的比湿、水汽通量、水汽通量散度的物理量参数均值均大于冰雹、雷暴大风;短时强降水K指数均值大于冰雹、雷暴大风,T850-T500均值大于26℃,短时强...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号