首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

2.
We present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.  相似文献   

3.
Moraines southwest of Lake Yashilkul, Pamir, Tajikistan, were dated using 10Be exposure ages of boulder surfaces. We found evidence for (1) an extensive glaciation ∼60,000 yr ago; (2) a less extensive glacial advance, which deposited a characteristic hummocky moraine lobe with exposure ages ranging from ∼11,000 to 47,000 yr, probably deposited at or before 47,000 yr ago; and (3) lateral moraines with exposure ages of ∼40,000 yr, 27,000 yr and 19,000 yr, respectively. Increasing aridity in the Pamir is most likely responsible for the progressively limited extent of the glaciers during the Late Pleistocene.  相似文献   

4.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

5.
Egesen moraines throughout the Alps mark a glacial advance that has been correlated with the Younger Dryas cold period. Using the surface exposure dating method, in particular the measurement of the cosmogenic nuclide 10Be in rock surfaces, we attained four ages for boulders on a prominent Egesen moraine of Great Aletsch Glacier, in the western Swiss Alps. The 10Be dates range from 10 460±1100 to 9040±1020 yr ago. Three 10Be dates between 9630±810 and 9040±1020 yr ago are based upon samples from the surfaces of granite boulders. Two 10Be dates, 10 460±1100 and 9910±970 yr ago, are based upon a sample from a quartz vein at the surface of a schist boulder. In consideration of the numerous factors that can influence apparently young 10Be dates and the scatter within the data, we interpret the weighted mean of four boulder ages, 9640±430 yr (including the weighted mean of two 10Be dates of the quartz vein), as a minimum age of deposition of the moraine. All 10Be dates from the Great Aletsch Glacier Egesen moraine are consistent with radiocarbon dates of nearby bog‐bottom organic sediments, which provide minimum ages of deglaciation from the moraine. The 10Be dates from boulders on the Great Aletsch Glacier Egesen moraine also are similar to 10Be dates from Egesen moraines of Vadret Lagrev Glacier on Julier Pass, in the eastern Swiss Alps. Both the morphology of the Great Aletsch Glacier Egesen moraine and the comparison with 10Be dates from the inner Vadret Lagrev Egesen moraine support the hypothesis that the climatic cooling that occurred during the Younger Dryas cold episode influenced the glacial advance that deposited the Great Aletsch Glacier Egesen moraine. Because of the large size and slow response time of Great Aletsch Glacier, we suggest that the Great Aletsch Glacier Egesen moraine was formed during the last glacial advance of the multiphased Egesen cold period, the Kromer stage, during the Preboreal chron. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Moraines on Schnells Ridge, southwest Tasmania, have been dated using in situ 10Be. An age of 19,400 ± 600 yr is indicated for the well-preserved innermost moraine from consistent measurements on four large quartzite boulders. This corresponds closely with exposure ages reported by T.T. Barrows et al. (2002, Quaternary Science Reviews 21, 159–173) for Last Glacial Maximum glacial features farther north in Tasmania and southeast Australia. In contrast, ages between 39,000 and 141,000 yr were obtained from a series of boulders on a more extensive outer moraine, indicating that this has had a more complex history.  相似文献   

7.
During the middle Pleistocene Nome River glaciation of northwestern Alaska, glaciers covered an area an order of magnitude more extensive than during any subsequent glacial intervals. The age of the Nome River glaciation is constrained by laser-fusion 40Ar/39Ar analyses of basaltic lava that overlies Nome River drift at Minnie Creek, central Seward Peninsula, that average 470,000 ± 190,000 yr (±1σ). Milligram-size subsamples of the lava were dated to identify and eliminate extraneous 40Ar enrichments that rendered the mean of conventional K---Ar dates on larger bulk samples of the same flow too old (700,000 ± 570,000 yr). While the 40Ar/39Ar analyses provide a minimum limiting age for the Nome River glaciation, maximum ages are provided by a provisional K---Ar date on a basaltic lava flow that underlies the Nome River drift at nearby Lave Creek, by paleomagnetic determinations of the drift itself at and near the type locality, and by amino acid epimerization analysis of molluscan fossils from nearshore sediments of the Anvilian marine transgression that underlie Nome River drift on the coastal plain at Nome. Taken together, the new age data indicate that the glaciation took place between 580,000 and 280,000 yr ago. The altitude of the Anvilian deposits suggests that eustatic sea level during the Anvilian transgression rose at least as high as and probably higher than during the last interglacial transgression; by correlation with the marine oxygen-isotope record, the transgression probably dates to stage 11 at 410,000 yr, and the Nome River glaciation is younger still. Analyses of floor altitudes of presumed Nome River cirques indicate that the Nome River regional snowline depression was at least twice that of the maximum late Wisconsin. The cause of the enhanced snowline lowering appears to be related to greater availability of moisture in northwestern Alaska during the middle Pleistocene.  相似文献   

8.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Glacial landforms and outwash terraces in the Nenana River valley, Reindeer Hills and Monahan Flat in the central Alaska Range were dated with 60 10Be exposure ages to determine the timing of Late Pleistocene glaciation. In the Nenana River valley, glaciation occurred at 104–180 ka (Lignite Creek glaciation), ca. 55 ka (Healy glaciation), and ca. 16 ka (Carlo Creek phase); glaciers retreated in the Reindeer Hills and Monahan Flat by ca. 14 ka and ca. 13 ka, respectively. The Carlo Creek moraine is similar in age to at least six other moraines in the Alaska Range, Ahklun Mountains and Brooks Range. The new data suggest that post‐depositional geological processes limit the usefulness of 10Be methods to the latter part (≤60 ka) of the late Quaternary in central Alaska. Ages on Healy and younger landforms cluster well, with the exception of Riley Creek moraines and Monahan Flat‐west sites, where boulders were likely affected by post‐depositional processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
At several times during the Quaternary, a major eastward-flowing outlet glacier of the former Patagonian Ice Sheet occupied the Lago San Martin Valley in Argentina (49°S, 72°W). We present a glacial chronology for the valley based on geomorphological mapping and cosmogenic nuclide (10Be) exposure ages (n = 10) of boulders on moraines and lake shorelines. There are five prominent moraine belts in the Lago San Martin Valley, associated with extensive sandar (glaciofluvial outwash plains) and former lake shorelines. Cosmogenic nuclide exposure ages for boulders on these moraines indicate that they formed at 14.3 ± 1.7 ka, 22.4 ± 2.3 ka, 34.4 ± 3.4 ka to 37.6 ± 3.4 ka (and possibly 60 ± 3.5 ka), and 99 ± 11 ka (1σ). These dated glacier advances differ from published chronologies from the Lago San Martin Valley based on 14C age determinations from organic sediments and molluscs in meltwater channels directly in front of moraines or in kettleholes within end moraine ridges. The moraine boulder ages also point to possible pre-LGM glacial advances during the last glacial cycle and a key observation from our data is that the LGM glaciers were probably less extensive in the Lago San Martin Valley than previously thought.  相似文献   

11.
New cosmogenic surface-exposure ages of moraine-crest boulders from southwestern Colorado are compared with published surface-exposure ages of boulders from moraine complexes in north-central Colorado and in west-central (Fremont Lake basin) Wyoming. 10Be data sets from the three areas were scaled to a single 10Be production rate of 5.4 at/g/yr at sea level and high latitude (SLHL), which represents the average 10Be production rate for two high-altitude, mid-latitude sites in the western United States (US) and Austria. Multiple nuclide ages on single boulders indicate that this 10Be production rate yields ages comparable to those calculated with a commonly used 36Cl production scheme. The average age and age range of moraine-crest boulders on terminal moraines at the southwestern Colorado and Wyoming sites are similar, indicating a retreat from their positions ∼16.8 36Cl ka (Cosmogenic ages in this paper are labeled 10Be or 36Cl ka or just ka when both 10Be or 36Cl ages are being discussed; radiocarbon ages are labeled 14C ka, calibrated radiocarbon are labeled cal ka, and calendar ages are labeled calendar ka. Errors (±1σ) associated with ages are shown in tables. Radiocarbon ages were calibrated using the data of Hughen et al. (Science 303 (2004) 202). This suggests a near-synchronous retreat of Pinedale glaciers across a 470-km latitudinal range in the Middle and Southern Rocky Mountains. Hypothetical corrections for snow shielding and rock-surface erosion shifts the time of retreat to between 17.2 and 17.5 10Be ka at Pinedale, Wyoming, and between 16.3 and 17.3 36Cl ka at Hogback Mountain, Colorado.  相似文献   

12.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

13.
Quaternary glacial history of the Central Karakoram   总被引:3,自引:0,他引:3  
The Quaternary glacial history of the world's highest mountains, the Central Karakoram, is examined for the first time using geomorphic mapping of landforms and sediments, and 10Be terrestrial cosmogenic nuclide surface exposure dating of boulders on the moraines and glacially eroded surfaces. Four glacial stages are defined: the Bunthang glacial stage (>0.7 Ma); the Skardu glacial stage (marine Oxygen Isotope Stage [MIS] 6 or older); the Mungo glacial stage (MIS 2); and the Askole glacial stage (Holocene). Glaciers advanced several times during each glacial stage. These advances are not well defined for the oldest glacial stages, but during the Mungo and Askole glacial stages glacial advances likely occurred at 16, 11–13, 5 and 0.8 ka. The extent of glaciation in this region became increasingly more restricted over time. In the Braldu and Shigar valleys, glaciers advanced >150 km during the Bunthang and Skardu glacial stages, while glaciers advanced >80 km beyond their present positions during the Mungo glacial stage. In contrast, glaciers advanced a few kilometers from present ice margins during the Askole glacial stage. Glacier in this region likely respond in a complex fashion to the same forcing that causes changes in Northern Hemisphere oceans and ice sheets, teleconnected via the mid-latitude westerlies, and also to changes in monsoonal intensity.  相似文献   

14.
Cosmogenic nuclide surface exposure dating of boulders and erratics provides new constraints for a glacial chronology in the source area of the Urumqi River, Tian Shan, China. 10Be exposure ages of 15.0 ± 1.3–17.1 ± 1.5 ka from the Upper Wangfeng (UWF) moraines agree well with their previous relative age assignments to marine isotope stage (MIS) 2, but are younger than published AMS 14C and electron spin resonance (ESR) ages (from 22.8 ± 0.6 to 37.4 ka). This difference may result from variations in techniques, or could reflect the impact of surface erosion and sediment/snow cover on surface exposure dating. 10Be ages from the Lower Wangfeng (LWF) moraines (18.7 ± 1.8 and 16.2 ± 1.5 ka) are indistinguishable from the UWF exposure ages, but are significantly younger than previously reported thermoluminescence (TL) and ESR ages (37.7 ± 2.6–184.7 ± 18 ka). Either these two groups were formed during the same period (MIS 2) and there are problems with TL and ESR ages, or the moraines were of very different ages and the similar exposure ages result from different degrees of degradation. Erratics on rock steps and a drumlin along >8 km of the main glacial valley above the UWF have internally consistent and slightly decreasing 10Be exposure ages indicating glacier retreat >2.5 m a?1 after MIS 2 and before middle or late Holocene glacier re‐advances. This retreat rate is similar to rates observed from modern glaciers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
10Be terrestrial cosmogenic nuclide surface exposure ages from moraines on Nevado Illimani, Cordillera Real, Bolivia suggest that glaciers retreated from moraines during the periods 15.5-13.0 ka, 10.0-8.5 ka, and 3.5-2.0 ka. Late glacial moraines at Illimani are associated with an ELA depression of 400-600 m, which is consistent with other local reconstructions of late glacial ELAs in the Eastern Cordillera of the central Andes. A comparison of late glacial ELAs between the Eastern Cordillera and Western Cordillera indicates a marked change toward flattening of the east-to-west regional ELA gradient. This flattening is consistent with increased precipitation from the Pacific during the late glacial period.  相似文献   

16.
The late Quaternary glacial history of the Nun‐Kun massif, located on the boundary between the Greater Himalaya and the Zanskar range in northwestern India, was reconstructed. On the basis of morphostratigraphy and 10Be dating of glacial landforms (moraines and glacial trimlines), five glacial stages were recognized and defined, namely: (i) the Achambur glacial stage dated to Marine Oxygen Isotope Stage 3 to 4 (38.7–62.7 ka); (ii) the Tongul glacial stage dated to the early part of the Lateglacial (16.7–17.4 ka); (iii) the Amantick glacial stage dated to the later part of the Lateglacial (14.3 ka, 11.7–12.4 ka); (iv) the Lomp glacial stage dated to the Little Ice Age; and (v) the Tanak glacial stage, which has the youngest moraines, probably dating to the last few decades or so. Present and former equilibrium‐line altitudes (ELAs) were calculated using the standard area accumulation ratio method. The average present‐day ELA of ~4790 m above sea level in the Greater Himalaya is lower than those in the Ladakh and Zanskar ranges, namely 5380 and ~5900 m a.s.l., respectively. The ELA in the Zanskar range is higher than in the Ladakh range, possibly due to the higher peaks in the Ladakh range that are able to more effectively capture and store snow and ice. ELA depressions decrease towards the Ladakh range (i.e. inner Plateau). Peat beds interbedded with aeolian deposits that cap the terminal moraine of Tarangoz Glacier suggest millennial‐time‐scale climate change throughout the Holocene, with soil formation times at c. 1.5, c. 3.4 and c. 5.2 ka, probably coinciding with Holocene abrupt climate change events. Given the style and timing of glaciation in the study area, it is likely that climate in the Nun‐Kun region is linked to Northern Hemisphere climate oscillations with teleconnections via the mid‐latitude westerlies.  相似文献   

17.
The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined 10Be exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in exposure ages for individual sites and within the recognised four morphostratigraphical groups. The exposure age disparity cannot be explained by differences in inheritance without using unrealistic assumptions but it can be explained by differences in post-depositional shielding which produces exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40–65 ka. More extensive glaciations occurred before 60–100 ka and 95–165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Har Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is further supported by high-resolution glacier modelling experiments.  相似文献   

18.
Accuracy of cosmogenic ages for moraines   总被引:1,自引:0,他引:1  
Analyses of all published cosmogenic exposure ages for moraine boulders show an average age range of 38% between the oldest and youngest boulders from each moraine. This range conflicts with the common assumption that ages of surface boulders are the same as the age of the landform. The wide spread in boulder ages is caused by erosion of the moraine surface and consequent exhumation of fresh boulders. A diffusion model of surface degradation explains the age range and shows that a randomly sampled small set of boulders (n = 3-7) will always yield a lower age limit for the moraine. The model indicates that for identical dating accuracy, six to seven boulders are needed from old and tall moraines (40,000-100,000 yr, 50-100 m initial height) but only one to four boulders from small moraines (20,000-100,000 yr, 10-20 m). By following these guidelines the oldest obtained boulder age will be ≥90% of the moraine age (95% probability). This result is only weakly sensitive to a broad range of soil erosion rates. Our analysis of published boulder ages indicates that <3% of all moraine boulders have prior exposure, and 85% of these boulders predate the dated moraine.  相似文献   

19.
Surface exposure dating of boulders on an exceptionally well‐preserved sequence of moraines in the Peruvian Andes reveals the most detailed record of glaciation heretofore recognised in the region. The high degree of moraine preservation resulted from dramatic changes in the flow path of piedmont palaeoglaciers at the southern end of the Cordillera Blanca (10° 00′ S, 77° 16′ W), which, in turn, generated a series of cross‐cutting moraines. Sixty 10Be surface exposure ages indicate at least four episodes of palaeoglacier stabilisation (>65, ca. 65, ca. 32 and ca. 18–15 ka) and several minor advances or stillstands on the western side of the Nevado Jeulla Rajo massif. The absence of ages close to the global Last Glacial Maximum (ca. 21 ka) suggests that if an advance culminated at that time any resulting moraines were subsequently overridden. The timing of expanded ice cover in the central Peruvian Andes correlates broadly with the timing of massive iceberg discharge (Heinrich) events in the North Atlantic Ocean, suggesting a possible causal connection between southward migration of the Intertropical Convergence Zone during Heinrich events and a resultant increase in precipitation in the tropical Andes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The statistical distributions of cosmogenic nuclide measurements from moraine boulders contain previously unused information on moraine ages, and they help determine whether moraine degradation or inheritance is more important on individual moraines. Here, we present a method for extracting this information by fitting geomorphic process models to observed exposure ages from single moraines. We also apply this method to 94 10Be apparent exposure ages from 11 moraines reported in four published studies. Our models represent 10Be accumulation in boulders that are exhumed over time by slope processes (moraine degradation), and the delivery of boulders with preexisting 10Be inventories to moraines (inheritance). For now, we neglect boulder erosion and snow cover, which are likely second-order processes. Given a highly scattered data set, we establish which model yields the better fit to the data, and estimate the age of the moraine from the better model fit. The process represented by the better-fitting model is probably responsible for most of the scatter among the apparent ages. Our methods should help resolve controversies in exposure dating; we reexamine the conclusions from two published studies based on our model fits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号