首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe a novel experiment for the accurate estimation of pulsar dispersion measures (DMs) using the Giant Metrewave Radio Telescope. This experiment was carried out for a sample of 12 pulsars, over a period of more than one year (2001 January to 2002 May) with observations about once every fortnight. At each epoch, the pulsar DMs were obtained from simultaneous dual-frequency observations, without requiring any absolute timing information. The DM estimates were obtained from both the single-pulse data streams and from the average profiles. The accuracy of the DM estimates at each epoch is ∼1 part in 104 or better, making the data set useful for many different kinds of studies.
The time-series of DMs shows significant variations on time-scales of weeks to months for most of the pulsars. An analysis of the mean DM values from these data shows significant deviations from catalogue values (as well as from other estimates in the literature) for some of the pulsars, with PSR B1642−03 showing the most notable differences. From our analysis results it appears that the constancy of pulsar DMs (at the level of 1 in 103 or better) cannot be taken for granted. For PSR B2217+47, we see evidence of a large-scale DM gradient over a 1-yr period, which is modelled as being due to a blob of enhanced electron density sampled by the line of sight. For some pulsars, including pulsars with fairly simple profiles such as PSR B1642−03, we find evidence for small changes in DM values for different frequency pairs of measurement, a result that needs to be investigated in detail. Another interesting result is that we find significant differences in DM values obtained from average profiles and single-pulse data.  相似文献   

2.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

3.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

4.
We analyse different methods of searching for planets around neutron stars by timing observations of pulsars. To this end, we study a few interesting models describing TOA residual variations that are observed, or could be observed, and which can mimic planets. We carry out a detailed theoretical analysis of the behaviour of these methods in the situations mentioned. We show that it is very helpful to look at these phenomena as some kind of quasi-periodic variations of residuals of time of arrival of pulsar pulses. We demonstrate that such a model-independent approach leads to promising conclusions that can be useful when analysing timing observations of pulsars to find planets or to prove that observed phenomena are of planetary origin.  相似文献   

5.
We present the results of a high-precision timing campaign directed at the binary millisecond pulsar J1600−3053. Submicrosecond pulsar timing has long been the domain of bright, low dispersion measure millisecond pulsars or large diameter telescopes. This experiment, conducted using the Parkes radio telescope in New South Wales, Australia, and utilizing the latest baseband recording hardware, has allowed this pulsar, although distant and faint, to present residuals to a model of its spin behaviour of 650 ns over a period of more than 2 yr. We have also constrained the orbital inclination via Shapiro delay to be between 59° and 70° to 95 per cent confidence and obtained a scintillation velocity measurement indicating a transverse velocity less than 84 km s−1. This pulsar is demonstrating remarkable stability comparable to, and in most cases improving upon, the very best long-term pulsar timing experiments. If this stability is maintained, the current limits on the energy density of the stochastic gravitational wave background will be reached in four more years.  相似文献   

6.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

7.
Using the standard equation for the slowdown of a neutron star, we derive a formula for the braking index via integration rather than the conventional differentiation. The new formula negates the need to measure the second time derivative of the rotation frequency, ν¨ . We show that the method gives similar braking indices for PSR B1509−58 and the Crab pulsar to those already in the literature. We point out that our method is useful for obtaining the braking indices of moderate-aged pulsars without the need for long, phase-connected timing solutions. We applied the method to 20 pulsars and discuss the implications of the results. We find that virtually all the derived braking indices are dominated by the effects of (unseen) glitches, the recovery from which corrupts the value of ν˙ . However, any real, large, positive braking index has implications for magnetic field decay and offers support to recent models of pulsar evolution.  相似文献   

8.
We are undertaking a high-frequency survey of the Galactic plane for radio pulsars, using the 13-element multibeam receiver on the 64-m Parkes radio telescope. We describe briefly the survey system and some of the initial results. PSR J1811−1736, one of the first pulsars discovered with this system, has a rotation period of 104 ms. Subsequent timing observations using the 76-m radio telescope at Jodrell Bank show that it is in an 18.8-d, highly eccentric binary orbit. We have measured the rate of advance of periastron which indicates a total system mass of 2.6±0.9 M, and the minimum companion mass is about 0.7 M. This, the high orbital eccentricity and the recycled nature of the pulsar suggest that this system is composed of two neutron stars, only the fourth or fifth such system known in the disc of the Galaxy.  相似文献   

9.
The Parkes High-Latitude pulsar survey covers a region of the sky enclosed by Galactic longitudes 220° < l < 260° and Galactic latitudes | b | < 60°. The observations have been performed using the 20-cm multibeam receiver on the Parkes 64-m radio telescope. A total of 6456 pointings of 265 s each have been collected. The system adopted provided a sensitivity limit, for long-period pulsars with 5 per cent duty cycles, of ∼0.5 mJy. Data analysis resulted in the detection of 42 pulsars of which 18 were new discoveries. Four of these belong to the class of the millisecond – or recycled – pulsars; three of these four are in binary systems. The double pulsar system J0737−3039 is among those and has been presented elsewhere. Here, we discuss the other discoveries and provide timing parameters for the objects for which we have a phase-connected solution.  相似文献   

10.
Using X-ray data from the Rossi X-ray Timing Explorer , we report the pulse timing results of the accretion-powered, high-mass X-ray binary pulsar 4U 1907+09, covering a time-span of almost two years. We measured three new pulse periods in addition to the previously measured four pulse periods. We are able to connect pulse arrival times in phase for more than a year. The source has been spinning down almost at a constant rate, with a spin-down rate of     for more than 15 yr. Residuals of pulse arrival times yield a very low level of random-walk noise, with a strength of ∼     on a time-scale of 383 d, which is 40 times lower than that of the high-mass X-ray binary pulsar Vela X-1. The noise strength is only a factor of 5 greater than that of the low-mass X-ray binary pulsar 4U 1626−67. The low level of the timing noise and the very stable spin-down rate of 4U 1907+09 make this source unique among the high-mass X-ray binary pulsars, providing another example, in addition to 4U 1626−67, of long-term quiet spin down from an accreting source. These examples show that the extended quiet spin-down episodes observed in the anomalous X-ray pulsars 1RXS J170849.0−400910 and 1E 2259+586 do not necessarily imply that these sources are not accreting pulsars.  相似文献   

11.
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6±1.9 Gyr . Our upper limit for the orbital eccentricity of only 8×10−7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.  相似文献   

12.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

13.
We present a simple method for determination of the orbital parameters of binary pulsars, using data on the pulsar period at multiple observing epochs. This method uses the circular nature of the velocity space orbit of Keplerian motion and produces preliminary values based on two one-dimensional searches. Preliminary orbital parameter values are then refined using a computationally efficient linear least-squares fit. This method works for random and sparse sampling of the binary orbit. We demonstrate the technique on (i) the highly eccentric binary pulsar PSR J0514−4002 (the first known pulsar in the globular cluster NGC 1851) and (ii) 47 Tuc T, a binary pulsar with a nearly circular orbit.  相似文献   

14.
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3, respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.  相似文献   

15.
Spectral analysis of the residual pulsearrival times of pulsars is a useful tool in understanding the nature of the underlying processes that may be responsible for the timing noise observed from pulsars. Power spectra of pulsar timing residuals may be described by one or a combination of powerlaws. As these spectra are expected to be very steep, it is important to ensure a high dynamic range in the estimation of the spectrum. This is difficult in practice since one is, in general, dealing with timing measurements made at unevenly placed epochs. In this paper, we present a technique based on, ‘CLEAN’ to obtain high dynamic range spectra from unevenly sampled data. We compare the performance of this technique with other techniques including some that were used earlier for estimation of power spectra of pulsar timing residuals.  相似文献   

16.
The recently discovered young supernova remnant (SNR) RX J0852.0−4622 has attracted much interest since its discovery because of the possibility that it may have been generated by the nearest supernova in recent history. We note the presence of two Parkes Multibeam Survey pulsars within the boundary of the remnant. We discuss the properties of the two pulsars and the likelihood of either of them being physically linked to the SNR. We tentatively suggest that, given the current uncertainties in the distance to RX J0852.0−4622, one of these pulsars, the 65-ms period PSR J0855−4644 could indeed be the compact remnant of this supernova explosion. If the pulsar birth site is at the geometrical centre of the nebula, then, for the transverse pulsar velocity to be reasonable, the SNR must be nearby (around 250 pc) and no younger than about 3000 yr old.  相似文献   

17.
由单颗脉冲星定义的脉冲星时受多种噪声源的影响,其短期和长期稳定度都不够好.为了削弱这些噪声源对单脉冲星时的影响,可以采取合适的算法对多个单脉冲星时进行综合得到综合脉冲星时,从而提高综合脉冲星时的长期稳定度.文中介绍4种综合脉冲星时算法:经典加权算法、小波分析算法、维纳滤波算法和小波域中的维纳滤波算法,将这4种算法分别应用于Arecibo天文台对两颗毫秒脉冲星PSR B1855+09和PSRB1937+21观测得到的计时残差并作出比较.  相似文献   

18.
We report on the discovery of a binary pulsar, PSR J1740−3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350 kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11 M. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045−7319.  相似文献   

19.
Stairs, Lyne & Shemar have found that the arrival-time residuals from PSR B1828−11 vary periodically with a period ≈500 d. This behaviour can be accounted for by precession of the radio pulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same time-scale. Here, we model the period residuals from PSR B1828−11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points towards the observer varies with precession phase; and (ii) the spin-down contribution, which arises from any dependence of the spin-down torque acting on the pulsar on the angle between its spin     and magnetic     axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spin-down torque on     , for which we assume the sum of a spin-aligned component (with a weight  1 − a   ) and a dipolar component perpendicular to the magnetic beam axis (weight a ), rather than the vacuum dipole torque  ( a = 1)  . We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star, we find evidence for an angle-dependent spin-down torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of the timing behaviour of PSR B1828−11, without fine tuning of the parameters.  相似文献   

20.
An algorithm of the ensemble pulsar time based on the optimal Wiener filtration method has been constructed. This algorithm allows the separation of the contributions to the post-fit pulsar timing residuals of the atomic clock and the pulsar itself. Filters were designed using the cross- and auto-covariance functions of the timing residuals. The method has been applied to the timing data of millisecond pulsars PSR B1855+09 and B1937+21 and allowed the filtering out of the atomic-scale component from the pulsar data. Direct comparison of the terrestrial time TT(BIPM06) and the ensemble pulsar time PTens revealed that the fractional instability of TT(BIPM06)−PTens is equal to  σ z = (0.8 ± 1.9) × 10−15  . Based on the  σ z   statistics of TT(BIPM06)−PTens, a new limit of the energy density of the gravitational wave background was calculated to be equal to  Ωg h 2∼ 3 × 10−9  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号