首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
古气候的启示   总被引:1,自引:0,他引:1  
王绍武  黄建斌  闻新宇 《气象》2012,38(3):257-265
回顾了近20~30年古气候的研究进展,包括下列问题:雪球和热力极大期、冰期-间冰期旋回、古季风、D/O循环和H事件、全新世季风、全新世气候突变、气候变化与古文明、近2000年的气候。研究表明,第四纪前的气候变化中CO_2起着重要的作用,但是在冰期-间冰期旋回中CO_2变化落后于温度变化。这说明虽然影响机制不同,但是温室气体和气候间有着密切的相互作用这一点则是可以肯定的。地球目前处于间冰期,面临着冰期来临的威胁。人类活动造成的气候变暖有可能推迟下一次冰期的到来。21世纪全球变暖仍将继续,人们可能做的、也是必须要做的,是尽可能地降低变暖的速率,以及可能达到的变暖峰值。  相似文献   

2.
冰期-间冰期旋回   总被引:1,自引:0,他引:1  
第四纪(2.5 Ma BP)气候的一个重要特征就是冰期-间冰期旋回.目前我们正处于间冰期中,气候温暖.这个间冰期地质学家称为全新世,是从11.5 kaBP开始的,至今已延续了1万年以上.而在此之前是距我们最近的一次冰期,称为末次冰期.  相似文献   

3.
从第四纪开始至今的2.5Ma气候特征为冰期-间冰期旋回。在100ka旋回中,间冰期长者可持续近30ka,而短者不足10ka。目前的间冰期已持续了11.5ka,显然面临着间冰期结束的威胁。  相似文献   

4.
总结回顾了二十年来古气候研究的进展,着重揭示古气候变化的事实.共分析了10个问题:(1)威尔逊旋回,(2)冰河时代,(3)生物大灭绝,(4)人类走出非洲,(5)第四纪冰期一间冰期旋回,(6)下一个冰期何时到来,(7)末次冰期冰盛期,(8)冰期气候的不稳定性,(9)全新世气候的不稳定性,(10)全新世气候变化趋势.  相似文献   

5.
<正>大约30多年前,由于有了深海沉积底栖有孔虫δ~(18)0记录,人们开始认识到过去50万年(500 ka)全球的冰量变化以10万年周期为主,称为10万年冰期旋回或冰期-间冰期旋回~([1-3])。后来的研究指出,在近800 ka~([4])或900 ka~([5]),100 ka周期占统治地位。计算行星运动表明,这些天文参数富氏展开的主要周期为:岁差19 ka及23 ka、地轴倾角41 ka、地球绕  相似文献   

6.
气溶胶对青藏高原气候变化影响的数值模拟分析   总被引:1,自引:0,他引:1  
利用美国大气研究中心(NCAR)提供的2组数值试验结果对比,分析了只考虑温室气体增加(1%CO2试验)和综合考虑大气温室气体与气溶胶持续增加(50yrs试验)条件下,青藏高原地区地表温度、积雪深度及其他气候要素的变化,并在此基础上探讨了大气气溶胶含量变化对高原气候变化的可能影响.分析结果表明:只考虑大气CO2含量每年增加1%的变化时,青藏高原相对邻近地区地表温度显著增加,春、夏、秋及冬季地表温度线性增温率均表现出随着海拔高度升高而增强.例如,在海拔1.5~2 km,3~3.5 km和4.5~5 km范围内对应的冬季增温趋势分别为0.29 ℃/10 a,0.36 ℃/10 a和0.50 ℃/10 a.在温室气体引起的高原增暖过程中地表积雪深度普遍降低,且高海拔地区的积雪减少愈加明显.当综合考虑气溶胶和温室气体含量共同增加时,青藏高原地表增暖相对偏弱,春、夏和秋季增温也随海拔高度上升而加强,但冬季地面增温幅度随海拔上升反而下降,海拔1.5~2 km,3~3.5km和4.5~5 km范围内对应的冬季增温趋势分别为0.02 ℃/10 a,-0.03 ℃/10 a和-0.13 ℃/10 a.对比分析发现,大气气溶胶增加造成青藏高原冬季增温不明显甚至出现变冷趋势,地面积雪也随之增多,这可能歪曲了青藏高原地区气候变暖对海拔高度的依赖性.  相似文献   

7.
温室气体和硫酸盐气溶胶的辐射强迫作用   总被引:9,自引:4,他引:5  
对GOALS4 .0海 陆 气耦合模式的相关部分进行了改进 ,主要改进包括温室气体的扩充和硫酸盐气溶胶“显式”方案的引入 ,并引入 2 0世纪温室气体的实际浓度变化以及硫循环模式模拟的硫酸盐气溶胶的三维全球浓度分布 ,模拟了温室气体和硫酸盐气溶胶造成的辐射强迫的空间分布和时间变化。全球平均的温室气体和硫酸盐气溶胶的辐射强迫分别为 2 .17W /m2 和 - 0 .2 9W /m2 ;温室气体造成的辐射强迫在空间上呈现明显的纬向结构 ,最大值 (大于 2 .5W/m2 )和最小值 (小于 1W /m2 )分别位于副热带和两极地区 ,在北半球主要工业区硫酸盐气溶胶的辐射强迫绝对值接近温室气体的辐射强迫值 (大于 - 2 .0W /m2 )。  相似文献   

8.
潘守文 《气象学报》1991,49(1):75-79
本文给出的计算地球日射总量公式,在极圈内精度与Milankovitch公式一致,在极圈外仍具有极高的精度,而Milcnkovitch公式则不能应用。据此讨论了气候变化中地球轨道参数对辐射项的影响。结果表明,距今最近一次间冰期和冰期的日射分布特征与地质考古发现的新事实基本吻合,因而有可能在气候的未来变化中对辐射项进行预测。  相似文献   

9.
1.概况日本EKO公司研制的MS-130型分光日射表能连续记录随太阳高度、云的种类和大气污染状况变化的不同波长的日射量以及由于地表和海洋的季节变化、时间变化和植物生长状态等引起的不同波长的日射量。本仪器可以根据用户要求装上宽带和窄带滤光器。用飞机观测空气污染状况时,还可以利用已达到实用阶段的遥感技术,装上光导纤维,测定各种反照率。 2.应用实例 1)空气污染穿过大气达到地面的各种波长的辐射强度随大气中的水汽量和气溶胶的多少而变化,这种辐射强  相似文献   

10.
用太阳活动拟合近2000年的温度变化   总被引:5,自引:4,他引:5  
利用两个反映太阳活动的指标-太阳黑子相对数及太阳黑子周期长度-来拟合近2000年我国的温度变化,其结果与近2000年,特别是近700年来温度变化的总趋势基本一致。同时拟合了120年来北半球温度的演变,结果表明:太阳活动是引起10^1年以上气温变化的基本因素,近十多年来温室气体的作用似乎不可忽略。  相似文献   

11.
The response of the LLN 2-D climate model to the insolation and CO2 forcings during the Eemian interglacial is compared to reconstructions obtained from deep-sea cores drilled in the Norwegian Sea and in the North Atlantic. Both reconstructions and modeling results show a decrease of sea-surface temperature (SST) in the higher latitudes (70–75 °N zonal belt for the model and the Norwegian Sea for the proxy records), associated with a more moderate cooling at lower latitudes (50–55 °N and North Atlantic), at the middle of isotopic substage 5e, several millenia before the beginning of continental ice-sheet growth. Such a comparison between the simulated SST and ice volume of the Northern Hemisphere has been extended to the whole last glacial-interglacial cycle. The influence of the insolation forcing on SST and the shortcomings of the model due to its zonal character are discussed. Received: 6 July 1995/Accepted: 19 December 1995  相似文献   

12.
Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of ?1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately ?0.80 K. Over land, albedo bias contributes ?1.20 K to the averaged cold bias of ?1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model’s simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.  相似文献   

13.
Four Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model. Received: 7 July 1999 / Accepted: 21 July 2000  相似文献   

14.
The climate of the last glacial maximum (LGM) is simulated with a coupled climate model. The simulated climate undergoes a rapid adjustment during the first several decades after imposition of LGM boundary conditions, as described in Part 1, and then evolves toward equilibrium over 900 model years. The climate simulated by the coupled model at this period is compared with observationally-based LGM reconstructions and with LGM results obtained with an atmosphere-mixed layer (slab) ocean version of the model in order to investigate the role of ocean dynamics in the LGM climate. Global mean surface air temperature and sea surface temperature (SST) decrease by about 10 °C and 5.6 °C in the coupled model which includes ocean dynamics, compared to decreases of 6.3 and 3.8 °C in slab ocean case. The coupled model simulates a cooling of about 6.5 °C over the tropics, which is larger than that of the CLIMAP reconstruction (1.7 °C) and larger than that of the slab ocean simulation (3.3 °C), but which is in reasonable agreement with some recent proxy estimates. The ocean dynamics of the coupled model captures features found in the CLIMAP reconstructions such as a relative maximum of ocean cooling over the tropical Pacific associated with a mean La Niña-like response and lead to a more realistic SST pattern than in the slab model case. The reduction in global mean precipitation simulated in the coupled model is larger (15%) than that simulated with the slab ocean model (~10%) in conjunction with the enhanced cooling. Some regions, such as the USA and the Mediterranean region, experience increased precipitation in accord with proxy paleoclimate evidence. The overall much drier climate over the ocean leads to higher sea surface salinity (SSS) in most ocean basins except for the North Atlantic where SSS is considerably lower due to an increase in the supply of fresh water from the Mississippi and Amazon rivers and presumably a decrease in salt transport by the weakened North Atlantic overturning circulation. The North Atlantic overturning stream function weakens to less than half of the control run value. The overturning is limited to a shallower depth (less than 1000 m) and its outflow is confined to the Northern Hemisphere. In the Southern Ocean, convection is much stronger than in the control run leading to a stronger overturning stream function associated with enhanced Antarctic Bottom Water formation. As a result, Southern Ocean water masses fill the entire deep ocean. The Antarctic Circumpolar Current (ACC) transport through the Drake Passage increases by about 25%. The ACC transport, despite weaker zonal winds, is enhanced due to changes in bottom pressure torque. The weakening of the overturning circulation in the North Atlantic and the accompanying 30% decrease in the poleward ocean heat transport contrasts with the strengthening of the overturning circulation in the Southern Ocean and a 40% increase in heat transport. As a result, sea ice coverage and thickness are affected in opposite senses in the two hemispheres. The LGM climate simulated by the coupled model is in reasonable agreement with paleoclimate proxy evidence. The dynamical response of the ocean in the coupled model plays an important role in determining the simulated, and undoubtedly, the actual, LGM climate.  相似文献   

15.
Signature of the Antarctic oscillation in the northern hemisphere   总被引:1,自引:0,他引:1  
Using the ECWMF daily reanalysis data, this paper investigates signatures of the Antarctic Oscillation (AAO) in the upper troposphere of the northern hemisphere. It is found that during boreal winter, a positive (negative) phase of the AAO is associated with anomalous easterlies (westerlies) in middle-low latitudes (~30–40°N) and anomalous westerlies (easterlies) in middle-high latitudes (~45–65°N) of the upper troposphere about 25–40 days later. While there is also a response in zonal wind in the tropics, namely over the central-eastern Pacific, to some extent, these tropical zonal wind anomalies can trigger a Pacific/North American teleconnection patterns (PNA)-like quasi-stationary Rossby waves that propagate into the Northern Hemisphere and gradually evolve into patterns which resemble North Atlantic teleconnection patterns. Furthermore, these quasi-stationary Rossby waves might give rise to anomalous eddy momentum flux convergence and divergence to accelerate anomalous zonal winds in the Northern Hemisphere.  相似文献   

16.
Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature.  相似文献   

17.
A set of global climate model simulations for the last thousand years developed by the Max Planck Institute is compared with paleoclimate proxy data and instrumental data, focusing on surface temperatures for land areas between 30° and 75°N. The proxy data are obtained from six previously published Northern Hemispheric-scale temperature reconstructions, here re-calibrated for consistency, which are compared with the simulations utilizing a newly developed statistical framework for ranking several competing simulations by means of their statistical distance against past climate variations. The climate model simulations are driven by either “low” or “high” solar forcing amplitudes (0.1 and 0.25 % smaller total solar irradiance in the Maunder Minimum period compared to the present) in addition to several other known climate forcings of importance. Our results indicate that the high solar forcing amplitude results in a poorer match with the hemispheric-scale temperature reconstructions and lends stronger statistical support for the low-amplitude solar forcing. However, results are likely conditional upon the sensitivity of the climate model used and strongly dependent on the choice of temperature reconstruction, hence a greater consensus is needed regarding the reconstruction of past temperatures as this currently provides a great source of uncertainty.  相似文献   

18.
The Tibetan Plateau has substantial impacts on the weather and climate of the Northern Hemisphere,due in large part to the thermal effects of the plateau surface.Surface temperature over the Tibetan Plateau is the most important parameter in determining these thermal effects.We present a method for verifying widely used reanalysis temperature products from NCEP-R2,ERA-Interim,and JRA-25 over the Tibetan Plateau,with the aim of obtaining a reliable picture of surface temperature and its changes over the plateau.Reanalysis data are validated against the topography elevation,satellite observations,and radiosonde data.ERA-Interim provides the most reliable estimates of Tibetan Plateau surface temperature among these three reanalyses.We therefore use this dataset to study the climatology and trends of surface temperature over the Tibetan Plateau.ERA-Interim data indicate a dramatic warming over the Tibetan Plateau from 1979 to2010,with warming rates of 0.33℃ per decade in annual mean temperature,0.22℃ per decade in summer and0.47℃ per decade in winter mean temperatures.Comparison with the results of previous studies suggests that surface warming over the Tibetan Plateau has accelerated during the past 30 years.This warming is distributed heterogeneously across the Tibetan Plateau,possibly due to topographic effects.  相似文献   

19.
This study evaluates the dependence of simulated surface air temperatures on model resolution and orography for the mid-Holocene. Sensitivity experiments with the atmospheric general circulation model ECHAM5 are performed with low (∼3.75°, 19 vertical levels) and high (∼1.1°, 31 vertical levels) resolution. Results are compared to the respective preindustrial runs. It is found that the large-scale temperature anomalies for the mid-Holocene (compared to preindustrial) are significantly different in the low- and high-resolution versions. For boreal winter, differences are mainly related to circulation changes caused by the response to thermal forcing in conjunction with orographic resolution. For summer, shortwave cloud radiative forcing emerges as an important factor. The anomaly differences (low minus high resolution version) in the Northern Hemisphere are regionally as large as the anomalous mid-Holocene temperature signals. Furthermore, they depend on the applied surface boundary conditions. We conclude that the resolution matters for the Northern Hemisphere response in mid-Holocene simulations, which should be taken into account in model-model and data-model comparisons.  相似文献   

20.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号